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same age, and we did not detect difference in the amount of SOD2 in 6 months old mice, 

when we started to observe muscle phenotypes (Figure 4.8A). We further performed 

immunohistochemistry in muscle sections with 8-hydroxyguanosine (8-OHG), a marker 

of nucleic acid oxidation, and found although a seemingly slight increase of oxidative 

damage immediately after the DOX induction, there was no difference in 6 months old 

animals (Figure 4.8B). This result confirms the Western blotting in the previous panel. 

 

Figure 4.8. Systemic mito-PstI mice did not show massive oxidative damages in 
skeletal muscle. A, Steady-state levels of different oxidative stress markers (3-
Nitrotyrosine, 4-HNE, and SOD2) were analyzed by western blotting in muscle 
homogenates from 3 and 6 months old control or systemic mito-PstI mice. GAPDH was 
used as loading control (n=4 per group). B, Immunohistochemical staining of 8-OHG in 
frozen muscle sections from 3 and 6 months old control or systemic mito-PstI mice (n=3 
per group). 

 

 

4.3.6 Loss of active acetylcholinesterase at neuromuscular junction in systemic mito-
PstI mice. 

Although we observed a mild mitochondrial defect in the skeletal muscle of 

systemic mito-PstI mice, it may not be the triggering factor leading to sarcopenia. As 

most of the skeletal muscle phenotypes described previously in Figure 4.2 involve muscle 

contraction, we decided to study the function of motor unit in these mice. We first 

confirmed that PstI was induced in the motor neurons in the spinal cord of systemic mito-

PstI mice immediately after the 5-day DOX induction (Figure 4.9A). We then looked at 
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the morphology of neuromuscular junctions (NMJs) in control and systemic mito-PstI 

mice, immediately or 3 months after the 5-day DOX induction. We did not detect any 

difference in the shape of NMJs at these time points (Figure 4.9B). In 6 months old mice, 

we also examined the area covered by NMJs, as well as fluorescent intensity of 

antibodies labeling acetylcholinesterase (AChE) and the acetylcholine receptor (AChR). 

These values were all similar between control and systemic mito-PstI mice (Figure 4.9C-

4.9D). 

 

Figure 4.9. Systemic mito-PstI mice present defects in neuromuscular junction. A, 
Western blotting using anti-PstI antibody to detect mito-PstI expression in spinal cord 
homogenate from systemic mito-PstI mice after a 5 day induction at 3 months of age. 
NEB (New England Biolabs) PstI restriction enzyme was used as a molecular weight 
control. Antibody against SDH was used as a loading control. B, Representative 
fluorescent images of neuromuscular junction (NMJ) labeled with -bungarotoxin (BTX) 
in mice immediately after the 5-day doxycycline induction and after a 3 months recovery. 
C-D, Quantification of the size of NMJ and BTX fluorescent intensity of 6 months old 
control and systemic mito-PstI mice (n=2 per group). E, Sucrose gradient profiles of 
acetylcholinesterase (AChE) activity at O.D. 415nm showing the different oligomeric 
forms of AChE expressed in 3 months (left panel) and 6 months (right panel) old control 
and systemic mito-PstI mice (n= per group). The arrow indicates the active form of 
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AChE. E, Quantification of total AChE activity of EDL muscle in 3 months and 6 
months old mice at O.D. 415nm (n=2 per group). 

 

 

In order to determine if NMJs are functionally intact, we further determined 

AChE activity profile with a sucrose gradient in the extensor digitorum longus (EDL) 

muscle. The AChE activity profiles were the same in control and systemic mito- PstI 

mice immediately after DOX induction (Figure 4.9E, left panel). However, although we 

were still able to recognize the peak corresponding to the monomeric (G1) and dimeric 

(G2) newly-synthesized endoplasmic reticulum resident forms of the enzyme, there was a 

dramatic decrease in the asymmetric A8 and A12 AChE forms in our 6 months old 

systemic mito-PstI mice (Figure 4.9E, right panel). The asymmetric A8 and A12 forms 

consist of two to three tetramers of the catalytic subunits are the active forms of the 

enzyme located at NMJ. The total AChE activity was more than 50% lower in 6 months 

old mito-PstI mice compared to controls (Figure 4.9F). Even though the NMJ in systemic 

mito-PstI mice appeared to be structurally intact, the diminished active AChE activity 

mimicked denervation and would affect muscle contraction and/or coordination, resulting 

in the decreased locomotive performance of these mice. 

 

4.4 Discussion 

The role of mtDNA damage in sarcopenia is still poorly understood. We found 

that transient mtDNA damage to the motor neurons and muscle fibers resulted in 

sarcopenia phenotypes, including weakness, frailty, and inactivity of the mice. However, 

to our surprise, the most significant effects were not observed in mature muscle fibers, 
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but rather at the NMJ and in satellite cells. These defects led to reduced locomotive 

activity, compounding and accelerating muscle loss. This observation was unexpected 

because previous reports showed that muscle accumulates mtDNA mutations over time, 

allegedly contributing to the declines in mitochondrial function at the individual fiber 

level during natural aging (Bua et al., 2006; Herbst et al., 2007). Our study suggests that 

age-related mtDNA alterations may affect muscle mostly by impairing the NMJ and 

satellite cells. 

The mtDNA Mutator mouse model that expresses a proofreading deficient 

catalytic subunit in polymerase provided the first evidence that somatic mtDNA 

mutations were capable of causing a variety of progeroid phenotypes in mammals 

(Kujoth et al., 2005; Trifunovic et al., 2004). Nevertheless, it is still not clear how low 

level damage to mtDNA elicits this phenotype. The original mitochondrial theory of 

aging suggests that increasing oxidative stress with age either directly causes cellular 

damage by oxidizing proteins and organelles, or further exacerbates mitochondrial 

dysfunction in a positive feedback manner (Harman, 1956). However, the Mutator mouse 

model did not show elevated oxidative damage in multiple mature tissues examined 

(Kujoth et al., 2005; Trifunovic et al., 2004) including skeletal muscle (Kujoth et al., 

2005), suggesting other mechanisms employed by mitochondrial defects triggered the 

aging signaling pathways. We did not detect a severe mitochondrial dysfunction in 

muscle of our systemic mito-PstI model, and did not detect oxidative stress in skeletal 

muscle. Nevertheless, this does not rule out the possibility that ROS was transiently and 

locally produced, acting as signaling molecules to modulate nuclear gene expression, 

rather than a biochemical weapon of mass destruction. 
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The transient mitochondrial defect could affect the NMJ by different mechanisms, 

which would impair metabolic reactions and possibly AChE assembly. The 

neuromuscular junction goes through a series of structural and functional changes during 

the course of aging (Courtney and Steinbach, 1981; Shigemoto et al., 2010). It was 

suggested that these changes were due to the degeneration and regeneration of muscle 

fiber segments at the synapse, and to be progressive yet permanent (Li et al., 2011). It 

was shown in rats that training at either high or low intensity was able to induce 

branching of nerve terminals and hypertrophy of the neuromuscular junction 

independently of muscle hypertrophy (Deschenes et al., 1993). More recently, a new 

approach, caloric restriction, was examined for its effect on age-related changes of NMJs. 

Both exercise and caloric restriction were able to attenuate age-related changes in mouse 

NMJs; however, they achieved this goal by different mechanisms: exercise decreased the 

fragmentation and partially reversed structural changes of NMJs, while caloric restriction 

preserved motor neurons and attenuated increase in muscle fiber turnover (Valdez et al., 

2010). It was shown that ubiquitous PGC-1 overexpression in an ALS mouse model 

carrying the SOD1 G93A mutation decreased motor neuron loss in the spinal cord and 

preserved NMJs morphology in advanced stage mice (Liang et al., 2011). A more recent 

study examining another ALS model with G37R mutation increased mitochondria 

biogenesis by overexpressing PGC1- in skeletal muscle only and found it did protect 

muscle function (Da Cruz et al., 2012). However, the preserved muscle function was not 

sufficient to extend lifespan in neither of the studies suggesting the importance of the 

NMJ and nervous system innervation. 
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In our present study, mtDNA damage also affected early myogenic Pax-7 positive 

progenitor cells. Satellite cells could possibly be more sensitive to mtDNA defects as was 

recently shown for other stem cell types such as hematopoietic progenitors in the Mutator 

mouse (Ahlqvist et al., 2012). We also found that thymic progenitors were the most 

sensitive and susceptible to mtDNA damage in our systemic mito-PstI mouse model 

(unpublished data). Damage to mtDNA in stem cell or progenitor phases can also lead to 

aberrant differentiation into mature cell types (Wang et al., 2011)(unpublished data). 

These findings highlight the importance of mtDNA integrity for stem and progenitor cell 

types and could contribute to aging processes even in post-mitotic tissue such as muscle. 

In summary, we presented a mouse model with mtDNA damages leading to an 

accelerated sarcopenia phenotype (Figure 4.10). While mtDNA depletion in skeletal 

muscle can affect energy production, the primary causes of sarcopenia appeared to be 

related to mitochondria at the NMJs. A sedentary lifestyle is the likely cause of the 

observed decrease of molecular chaperones as well as shrinkage of satellite cell pool in 

skeletal muscle. However, it is also possible that satellite cells were directly affected by 

mtDNA damage, as multi-potent cells have been reported to be particularly sensitive to 

such insults. Moreover, the previous observations that NMJs depend on muscle 

regeneration to mature (Li et al., 2011) does not allow us to rule out that satellite cell 

damage was the primary trigger. Although the factors contributing to sarcopenia are 

complex and feedback-prone, this study established that damage to mtDNA is likely to 

cause sarcopenia not by directly affecting mature muscle, but rather by affecting the NMJ 

and satellite cell pools. 
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Figure 4.10. Proposed mechanism showing transient mtDNA leading to premature 
sarcopenia. Proposed mechanism showing how mtDNA damage in the spinal cord, 
neuromuscular junction, and muscle fibers causes physiological denervation, including 
damages to neuromuscular junctions and depletion of muscle satellite cell pool probably 
by transient ROS signaling, resulting in compromised capacity to cope with metabolic 
and traumatic stress of the skeletal muscle. Image modified from: copyright © 2001 
Benjamin Cummings, an imprint of Addison Wesley Longman, Inc. 
 

 

4.5 Materials and Methods 

Animals 

The generation of mito-PstI transgenic mice was previously described (Fukui and 

Moraes, 2009). Mito-PstI male and female animals were pure C57BL/6J backcrossed at 

least 10 generations, and mito-PstI animals were crossed with Rosa26-rtTA animal of the 

same genetic background (Jackson Laboratories) (Belteki et al., 2005). 
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All mice procedures were performed according to a protocol approved by the 

University of Miami Institutional Animal Care and Use Committee. When mito-PstI was 

induced at 3 months of age, we supplied both control and systemic mito-PstI animals 

with 10g/kg doxycycline diet (Bioserv©) for 5 days and afterwards replaced with 

standard rodent diet. 

All experiments and comparisons described were performed on age and gender 

matched animals. 

 

Analysis of the NMJ 

AChE enzyme activity and oligomeric forms were assessed as described (Rossi 

and Rotundo, 1993). Briefly, hind limb muscles were homogenized in 10 volumes of 

extraction buffer consisting of 20 mM sodium borate buffer, pH 9.0, 1 M NaCl, 1.0% 

Triton X-100, 10 mM EDTA, and protease inhibitors. Aliquots were analyzed by velocity 

sedimentation on 5–20% sucrose gradients, and the fractions were assayed for AChE 

activity using the colorimetric Ellman assay (Ellman et al., 1961). For quantitative 

analysis of the NMJs, mouse thigh muscles were labeled with Alexa-555-Btx and Alexa-

488 Fasciculin2, and digital images were taken at two wavelengths appropriate to each 

fluorophore using a Princeton Instruments Micromax camera mounted on a Leica DMR-

A microscope. Images were captured using Slidebook 4.0 software and measured using a 

calibrated optical micrometer. For analysis of AChE and AChR, the images were 

captured using identical exposure parameters and the fluorescence intensity at each 

wavelength expressed as relative units. Confocal images were captured using LSM710 

confocal microscope (Zeiss). 
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Treadmill Test 

Endurance was evaluated using a six lane treadmill with motivation grid designed 

for rodents (Columbus Instruments). Animals were given one training day to adapt to the 

equipment and motivation grid. On the test day, mice were required to run at a speed of 9 

meters/min for 3 minutes with the number of falls onto the motivation grid recorded. 

 

Activity Monitoring 

Spontaneous self-initiated movement was recorded using an activity cage setup 

(Columbus Instruments) designed for mice. Animals were separately housed in a novel 

cage environment thirty minutes prior to their dark cycle and monitored for a twelve or 

twenty-four hour periods undisturbed. The number of infrared beam breaks that occurred 

inside of the cage was counted to determine ambulatory activity. 

 

Western Blotting 

Protein extracts were prepared from the skeletal muscles we analyzed that were 

homogenized with a hand-held homogenizer (Omni) in phosphate-buffered saline (PBS) 

containing a 1x protease inhibitor cocktail (Roche). Samples were then snap-frozen in 

liquid nitrogen and stored in -80 oC until used. Upon use, sodium dodecyl sulfate (SDS) 

was added to the homogenate at the final concentration of 4%. Homogenates were then 

centrifuged at 15,000x g and the supernatant was collected for analysis. Protein extracts 

from cells were isolated from trypsinized cells washed once in PBS 1x protease inhibitor 

cocktail (Roche). Cells were then lysed with RIPA buffer (62.5mM Tris; 150mM NaCl, 1% 
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NP-40, .25% Sodium Deoxycholate, 1mM EDTA pH 7.4) and sonicated. Lysed cells 

were centrifuged at 15,000x g and the supernatant was collected for analysis. 

Proteins were quantified using Dc Protein Assay kit using Lowry HS method 

(BioRad). Proteins were loaded on either a 12% SDS-acrylamide gel or 4-20% SDS-

polyacrylamide gradient gel (BioRad) depending on the predicted molecular weight. The 

gel was transferred to Polyvinylidene Fluoride (PVDF) membrane (BioRad). 

Membranes were blocked in 1:1 of PBS with Odyssey blocking solution (LI-COR 

Biosciences) for 1 hour at room temperature. Primary antibodies used were anti-PstI 

(Srivastava and Moraes, 2001), rodent OXPHOS cocktail (MitoSciences), Tim23 (BD 

Biosciences), Hsp60 (Cell Signaling), Hsp70 (Cell Signaling), mtHsp70 (Cell Signaling), 

Grp78 (Cell Signaling), CHOP (Cell Signaling), PDI (Cell Signaling), Pax-7 (Abcam), α-

tubulin (Sigma), and actin (Sigma). Primary antibody was incubated overnight at 4oC. 

HRP conjugated anti- mouse or rabbit secondary antibodies (Cell Signaling) were used at 

1:3000-1:5000 dilutions. Secondary antibodies were incubated for 1 hour at room 

temperature. Blots were visualized with pico Supersignal West Chemilluminescent 

substrates (ThermoScientific). Films were developed with a Konica Minolta developer. 

Optical density was quantified using Image J software. 

 

Crude Mitochondrial Isolation 

Mitochondria were isolated from freshly isolated skeletal muscle as previously 

described (Diaz et al., 2005). Final mitochondrial pellets were resuspended into ice-cold 

mitochondria incubation buffer containing 130 mM KCl, 2 mM KH2PO4, 2 mM MgCl2, 
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10 mM HEPES, and 1 mM EDTA (pH 7.2). Protein concentration was determined by 

Bradford protein assay (BioRad). 

 

Real-time PCR 

DNA was extracted from quadriceps using phenol: chloroform method. The 

following primer pairs were used for the quantification of mtDNA copy number 

compared to total DNA: ND1 and β-actin (internal genomic DNA control). Primers and 

sequences are as followed: ND1 3281F, CAGCCTGACCCATAGCCATA; ND1 3364B, 

ATTCTCCTTCTGTCAGGTCGAA. Primers for genomic DNA were the following: -

actin F, GCGCAAGTACTCTGTGTGGA; -actin B, CATCGTACTCCTGCTTGCTG. 

Maxima SYBR Green/ROX qPCR master mix (Fermentas) was used to perform 

real-time PCR with the CFX96 Realtime PCR system (Bio-Rad) under the suggested 

PCR conditions from the manufacturer. Relative quantity was corrected for relative PCR 

amplification efficiency using BioRad CFX Manager Software. Comparative Ct method 

was used to determine the relative abundance of mtDNA compared to control samples 

(Schmittgen and Livak, 2008). 

 

Spectrophotometer Assays 

OXPHOS assays were previously described (Barrientos, 2002). Briefly, 

homogenates from skeletal muscle were prepared using a tissue homogenizer (Omni) in 

PBS plus protease inhibitor cocktail (Roche) on ice. 2 mM cytochrome c reduced with 

sodium dithionite was added to homogenates in a buffer (10 mM KH2PO4, 1 mg/mL 

BSA, 120 mM lauryl maltoside). Samples were read at 550 nm with the slope reading 
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taken for 2 minutes at 37oC. 240M Potassium cyanide was used to inhibit the reaction 

to ensure slope was specific to COX. Readings were normalized to protein concentration 

determined by Bradford methodology. 

Homogenates for citrate synthase were added to a buffer (50mM Tris-HCl pH 7.5, 

20mM Acetyl CoA, 10mM 5,5’-dithiobis (2-nitrobenzoic acid) .2% triton X-100) and 

performed at 412 nm with 50mM oxaloacetate to start the reaction. Readings were 

obtained for 5 minutes at 30oC, and normalized to protein concentration determined by 

Bradford methodology. 

 

In situ cytochrome c and succinate dehydrogenase activity assay 

Freshly isolated quadriceps were embedded in O.C.T. compound (Sakura) and 

immediately frozen in isopentane-cooled liquid nitrogen. Each muscle sample was cut 

into 10 µm transverse sections and stained for SDH and COX activities as described 

previously (Sciacco and Bonilla, 1996). 

 

Inflammatory Cytokines Quantification 

Blood was taken from the left ventricle of deeply anesthetized mice before 

euthanization. Blood was allowed to clot on ice, and serum was isolated at 1,000x g in a 

bench top centrifuge (Eppendorf 5424) for 15 minutes at 4°C. For complete platelet 

removal, serum was re-spun at 10,000x g for 10 minutes at 4°C. Serum was used in BD 

cytometric bead array mouse inflammation cytokine kit according to the manufacturer's 

instructions (BD Biosciences). Samples were analyzed on a BD LSR Fortessa cell 

analyzer (BD Biosciences). 
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DEXA Scan  

DEXA scans were performed using a Lunar PIXImus DEXA scan according to 

manufacturer’s instructions. Default software was used to quantify the measurements. 

 

Statistics 

Two-tailed, unpaired Student t test was used to determine the statistical 

significance between the different groups. Data are expressed as mean ± SEM, and the 

numbers of observations/animals used in each experimental series were included in the 

figure legends. *P<0.05, **P<0.01, ***P<0.005. 
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CHAPTER 5. CONCLUDING REMARKS 

 

Cancer and aging are the two major and related health concerns of modern society. 

Over the past decade, the field of mitochondrial energy metabolism and mitochondrial 

DNA damage has made significant progress in understanding the role of metabolic 

transformation during carcinogenesis and the contribution of mitochondrial dysfunction 

to aging. Mitochondria are key players in cell physiology, and modifications of 

mitochondrial structure and energy production provide selective advantage for the 

survival, proliferation, and metastasis of tumor cells. Mitochondria are also involved in 

cell signaling process to dictate the fate of either growth, differentiation, cell death, or 

cell cycle arrest. Mitochondrial function is compromised or biogenesis level is lowered 

under a range of pathological conditions including cancer, cachexia associated chronic 

diseases, and aging-related decline. Knowing that mitochondrial dysfunction has been 

involved in these diseases, it is of great importance to dissect the mechanisms of 

metabolic adaptation and to compensate for mitochondrial function loss or disability 

during disease-related wasting and natural aging. 

 

5.1 Lipid Metabolism in Carcinogenesis 

The work presented in this dissertation demonstrates that the pharmacological 

agent bezafibrate is effective in increasing mitochondrial biogenesis through the 

activation of the transcription factors PPARs and the transcriptional coactivator PGC-1. 
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As a result, the carcinogenic properties of cultured cancer cells have been impaired, 

including glycolytic metabolism, cell growth, and invasiveness. 

Administration of bezafibrate in culture shifts cancer cell metabolism towards 

oxidative phosphorylation, especially lipid oxidation, resulted in impairment of 

carcinogenesis at the levels of cell growth and invasiveness ex vivo. It is also suggested 

that this metabolic shift could tamper cancer cell metastasis in vivo. Noticeably, 

bezafibrate, as well as other fibrate derivatives, are prominent in the regulation of lipid 

metabolism, and have been introduced to clinics for decades in the treatment of 

hyperlipidemias. The mechanism of fibrates activating lipid metabolism, first elucidated 

in 1990s, is that these agents induce the transcription of a number of genes facilitating 

lipoprotein metabolism through the PPARs transcription factors, especially 

PPAR(Staels et al., 1998). Alterations in lipid synthesis have been reported in cancer, 

and in certain cases, associated with degree of malignancy and cancer progression. Fatty 

acid synthase (FASN) overexpression in prostate cancer cells could lead to increased 

proliferation and anchorage-independent growth. In the presence of androgen receptor 

(AR), FASN serves as an oncogene that exerts its oncogenic effect by inhibiting the 

intrinsic pathway of apoptosis (Migita et al., 2009). Nomura and colleagues reported that 

another lipolytic enzyme, monoacylglycerol lipase (MAGL), was highly expressed in 

aggressive human cancer cells and primary tumors, where it regulated a fatty acid 

network enriched in oncogenic signaling lipids that promotes survival, invasion, and 

tumor growth in vivo. Overexpression of MAGL in nonaggressive cancer cells 

recapitulated this fatty acid network and increases their carcinogenicity (Nomura et al., 

2010). 
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Hypoxia and HIF-1 transcription complex have an inhibitory effect on lipid -

oxidation in different tissues. It was reported that HIF-1 promoted lipid accumulation 

through the induction of the hypoxia-inducible protein 2 and increased the deposition of 

neutral lipids into lipid droplets (Gimm et al., 2010). HIF-1 also promotes the uptake of 

free fatty-acids and the production of triacylglycerol in liver and adipose tissue through 

the induction of PPAR(Krishnan et al., 2009 The exact role of lipid deposition in 

supporting cancer-cell survival and/or tumor progression is not fully understood, however, 

it is possible that enhanced storage of triacylglycerides could be beneficial during 

conditions of intermittent hypoxia as they may be used as a readily available fuel source 

after reoxygenation (Santos and Schulze, 2012). 

 

5.2 Potential Applications of Increasing Mitochondrial Biogenesis in the Treatment 
of Cancer Cachexia 

The results presented in this dissertation also show that increased mitochondrial 

biogenesis is not sufficient to prevent or reverse muscle wasting in an acute cancer-

induced cachexia mouse model. However, the markers for mitochondrial function have 

been restored in the skeletal muscle of tumor-bearing mice, and it may be beneficial if 

achieved in combination with other treatments. 

Cancer-induced cachexia usually associates with a hyperactive metabolic state of 

the patient. The tumor produces cytokines and other factors to upregulate catabolism in 

order to supply the fast-proliferating tumor cells with enough energy substrates while 

resulting in a dramatic increase of energy expenditure and a depletion of host tissues 

(Esper and Harb, 2005). Clinical management for cachexia is limited and the effect is not 

satisfactory. Increase calorie intake or nutritional supplements do not seem to rescue the 
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wasting phenotypes in all cachexic patients. However, advancement has been made as 

research proceeds in identifying new mediators and potential targets of cachexia, i.e. 

myostatin and activin. Both myostatin and activin bind to the Activin type II receptor B 

(ActRIIB), and the overexpression of these two genes has been implicated in skeletal 

muscle wasting (Trendelenburg et al., 2012; Zimmers et al., 2002). In recent studies, 

blocking ActRIIB was used to treat cancer cachexia in several distinct mouse models 

(Benny Klimek et al., 2010; Zhou et al., 2010). Nevertheless, the fact that skeletal muscle 

mass is preserved by inhibiting the myostatin/activin axis does not mean that over 

activity of this pathway is responsible for cachexia in all murine models or humans. This 

lack of causality may not be an issue if blockade of this pathway is sufficient to induce 

clinically meaningful inhibition of cachexia (Fearon et al., 2012). 

With an in-depth understanding of its heterogeneity, it is well accepted that 

clinical management for cachexia should be conducted in a cocktail approach, combining 

targeted treatment with nutrition and exercise (Fearon, 2008). Muscle function relies 

largely on the amount and competency of mitochondria, thus skeletal muscle-specific 

mitochondrial biogenesis induced by PGC-1 or exercise seems a promising strategy to 

improve skeletal muscle function during cachexia. Although we did not observe 

protective effect of increased mitochondrial biogenesis in our acute LLC cachexia model, 

this does not rule out the possibility that it is beneficial in other slow-progression cancer 

cachexia mouse models. Another possibility is that PGC-1 promotes muscular 

angiogenesis via VEGF activation, which results in increased exposure of skeletal muscle 

to the circulating pro-wasting tumor factors and cytokines. 
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However, it should be noted that increased muscle mitochondrial biogenesis was 

associated with larger tumors in our mice. Although we do not have a mechanistic 

explanation for this, it is an important fact to keep in mind. 

5.3 The Role of Mitochondria in Muscle Aging 

Finally, we demonstrated that a transient mtDNA damage in adulthood is 

involved and could have a role in age-related sarcopenia. It appears that there is a high 

level of sensitivity to energy deficit or mtDNA damage signaling at neuromuscular 

junctions and the muscle stem cell pool. 

Mouse models of aging based on mtDNA damage are of great research value for 

the study of mitochondrial modifications during age-associated changes. At this point, it 

is still not clear how damage accumulated in the mtDNA elicits global changes in age-

associated nuclear gene expression. We and others did not detect massive oxidative stress 

in the muscle, suggesting either ROS transiently functioned as a signal transducer, or 

other mechanisms were employed by mitochondrial defects to trigger the aging signal 

cascade (Kujoth et al., 2005; Trifunovic et al., 2004)(unpublished data). 

The neuromuscular junction goes through a series of structural and functional 

changes during the course of aging (Courtney and Steinbach, 1981; Shigemoto et al., 

2010). Resistance training in patients with single large-scale mtDNA deletions had 

beneficial effects with improvements in muscle oxidative capacity, muscle strength, and 

regenerative satellite cells (Murphy et al., 2008). More recently, a new approach, caloric 

restriction, was examined for its effect on age-related changes of NMJs. Both exercise 

and caloric restriction are able to attenuate age-related changes in mouse NMJs. Exercise 

decreases the fragmentation and partially reversed structural changes of NMJs, while 
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caloric restriction preserves motor neurons and attenuates muscle fiber turnover (Valdez 

et al., 2010). Meanwhile, both exercise and caloric restriction have been shown to 

effectively enhance skeletal muscle stem cell function (Cerletti et al., 2012; Shefer et al., 

2010). Satellite cells could possibly be more sensitive to mtDNA defects as was recently 

shown for other stem cell types such as hematopoietic progenitors in the Mutator mouse 

(Ahlqvist et al., 2012). Our finding further highlights the importance of mtDNA integrity 

for stem and progenitor cell types and could contribute to aging processes even in post-

mitotic tissue such as muscle. It would be interesting to test if the sarcopenia phenotypes 

observed in our systemic mito-PstI mice can be prevented or even reversed by exercise or 

caloric restriction. 
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