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progenitors were isolated and incubated for 5 days with drugs intended to treat cancer 

(iBet and MCTP) and a marker of proliferated cells (EdU). We found significantly more 

cells in the wells where progenitors were incubated with MCTP; however, EdU to DAPI 

ratio was similar to control (DMSO), leaving unresolved whether MCTP increased 

proliferation or promoted survival (Figure 38A-C). 

We have also optimized immunostaining of retinal cell markers for the 

differentiation analysis, Brn3/Tuj1 for RGCs, Vc1.1 for amacrine cells, and glutamate 

synthetase (GS) for Muller glia (Figure 39). 

Figure 39. Retinal cell markers.  
P5 mouse immunopanned RGC immunostained with Brn3 and Tuj1 and counterstained 
with DAPI. P5 mouse retinal suspension immunostained for Vc1.1 (amacrine cell) or GS 
(muller glia) marker and counterstained with DAPI.
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APPENDIX C: Retinal progenitors subtypes 

 

SUMMARY 

Identification of retinal progenitors subtypes is important for studying how 

intrinsic properties of neural progenitors influence their proliferation and differentiation. 

Here we introduce immunopanning as an approach for isolation of retinal neural 

progenitors using progenitor subtype-specific surface markers predicted by 

bioinformatics analysis. Embryonic day 14 mouse retinal progenitors enriched by 

immunopanning using surface marker Frizzled-3 proliferate and differentiate in vitro, 

even when plated at near clonal density. Proliferation is greater when plated on 

fibronectin as compared to laminin. On both substrates, significantly more Frizzled-3-

immunopanned cells proliferate, compared to unselected cells from whole retinal 

suspensions, resulting in a greater number of total and EdU+ cells after 5 days in culture. 

Thus, immunopanning is suitable for enrichment of retinal and other neural progenitor 

subtypes using specific surface markers. Future research may be directed at identifying 

whether this Frizzled-3 subset of progenitor cells retains unique properties in capacity for 

differentiation. 

 

INTRODUCTORY REMARKS 

Retinal progenitors’ transcriptome analysis is important for characterization of 

this cell population (see Appendix A, above). Identification of subtypes within the total 

retinal progenitors population, on the other hand, could improve our understanding of 

how specific cell types in the retina are born (Cepko, 1999). For example, a transcription 
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factor Olig2 has been shown to be associated with a linage of a specific retinal 

progenitors subtype (Hafler et al., 2012). Microarray analysis of single cells from 

embryonic mouse retinal suspension identified 42 retinal progenitors and demonstrated 

heterogeneity within retinal progenitors, suggesting existence of multiple subtypes 

(Trimarchi et al., 2008).  

Here, we utilized single retinal progenitors microarray data (Trimarchi et al., 

2008) to predict subtype-specific surface markers, and attempted to isolate retinal 

progenitors subtypes through immunopanning with antibodies against these specific 

surface markers. We also characterized the proliferative ability of these progenitors in 

culture and on different substrates. 

 

Methods and Results 

Previous research performed microarray analysis on single cells from embryonic 

mouse retinal suspension, and in retrospect identified 42 E12-P0 retinal progenitors based 

on markers detected by microarrays (Trimarchi et al., 2008). We have performed factor 

analysis on transcriptomes of these progenitors and found that they segregate into 3 

clusters (components), cumulatively explaining between them 77% of the variance 

between the cells’ transcriptomes (Table 6). The 3rd cluster consisted exclusively of P0 

progenitors, whereas clusters 1 and 2, each, comprised of progenitors ranging from E12 

through E16, with three P0 progenitors also included into the 1st cluster although they 

also loaded on to the 3rd cluster at .46 and above. These analyses suggest that progenitors 

may be segregated into subtypes regardless of the age as well as by the age at which they 

were extracted. It is also possible that the clustering of (E12-E16) progenitors was based 
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on their age after differentiation into retinal progenitors, which itself could have occurred 

at different ages of the animal embryonic development.       

 

Table 6. Factor analysis on transcriptomes of single-cell retinal progenitors. 
Microarrays’ data from 42 single retinal progenitors was analyzed with Factor Analysis: 
Extraction Method: Principal Component Analysis, with Varimax Rotation and Kaiser 
Normalization (SPSS). 
 
 

 

Figure 40. Retinal progenitors segregate into clusters by different markers. 
E14 mouse retinal progenitors cultured for 4 days and immunostained for Pax6 (top left 
and Brn3 (top right), and counterstained with nuclear marker DAPI (bottom right. 
merged). Pax6+/Brn3+ clusters of retinal progenitors outlined with dashed line; 
Pax6+/Brn3- clusters not outlined (bottom left). 
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To explore the hypothesis that there might be retinal progenitor subtypes within 

the same age of the animal, we immunostained E14 mouse retinal suspension cultured 4 

days in proliferation media, for transcription factors Pax6 which labels retinal progenitors 

and Brn3 an indicator of RGC lineage. We found that the cells segregated into two types 

of clusters, Pax6+/Brn3+ and Pax6+/Brn3-, and all appear as progenitors by morphology 

(Figure 40). These data supports the hypothesis that retinal progenitors may segregate 

into subtypes within the same age of the animal. 

To further explore the hypothesis that retinal progenitors may segregate into 

subtypes within the same age of the animal, we identified surface markers unique to  

Figure 41. Immunopanned retinal progenitors proliferate and differentiate in vitro. 
E14 mouse retinal progenitors immunopanned with anti-Fzd3 antibody and cultured in 
proliferation media, imaged in brightfield every 30 minutes for 24 hours (time-lapse); 
representative images of a dividing cell are shown (top panel). After 5 days in culture, 
cells grown in proliferation were immunostained for EdU and DAPI (bottom left), or 
cells grown in differentiation media were immunostained for EdU, DAPI, and a neuronal 
marker Tuj1 (bottom right), 
 

groups of retinal progenitors, in order to purify them through immunopanning and 

investigate whether they have discrete proliferation or differentiation patterns.  To 
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accomplish this, we have filtered the above single retinal progenitors microarrays data by 

significantly expressed genes encoding cell-surface proteins that are also not expressed in 

our purified rat RGCs and amacrine cells microarrays, as some of these cells are born 

very early in development and exist concurrently with retinal progenitors, but that are 

also expressed only in groups but not all progenitors. We have identified the following 

candidates: Frizzled-3, Frizzled-4, and TNFRSF-22. 

We immunopanned cells from E14 retinal suspension using the antibodies against 

Frizzled-3 (Fzd3) and TNFRSF-22, and cultured them for 5 days either on laminin or 

fibronectin, and with proliferation or differentiation media. The cells proliferated and 

some differentiated into neurons (Figure 41); Fzd3 condition shown in this example. 

We next investigated the properties of progenitors immunopanned with Fzd3 and 

TNFRSF-22 by plating them on different substrates, incubating in proliferation media 

(PM) or differentiation media (DM), and quantifying the number of progenitors and 

neurons defined by morphology (Figure 42; Fzd3 immunopanned cells shown in this 

example), compared to control in which the panning dishes were coated with an antibody 

against an intracellular protein. We found that in normal neuronal culture conditions (1x 

laminin in DM), there were significantly more neurons in TNFRSF-22 and even more in 

Fzd3 immunopanned cells. In both, PM and DM, there were significantly more 

progenitors in TNFRSF-22 and even more in Fzd3 immunopanned cells on 10x 

fibronectin; the increase was less significant on 10x laminin in PM and was not 

meaningful on 1x laminin in DM (Figure 43). This data suggests that immunopanning 

with Fzd3 and TNFRSF-22 antibodies can isolate cells from E14 retinal suspension, with 
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Fzd3 yielding more cells, and that 10x fibronectin is the 

preferred substrate for culturing retinal progenitors.  

Figure 42. Characterization of immunopanned 
progenitors and neurons differentiated from them.  
E14 mouse retinal progenitors immunopanned with 
anti-Fzd3 antibody and cultured in differentiation 
media on 10x fibronectin for 5 days, immunostained 
for tubulin, EdU and DAPI. Neurons and progenitors 
were defined by morphology, with neurons having 
thin long processes and rounded cell bodies 
(arrowhead), and progenitors having think and short 
or no processes and varying shapes of cell bodies (arrow). In this example all 3 cells are 
EdU+ (red). 

 
To address whether cells isolated through Fzd3 and TNFRSF-22 immunopanning 

can proliferate and differentiate, we incubated them with EdU (which labels cells that 

undergone mitosis). Preliminary observations suggested that by most, the cells were EdU 

positive (Figure 42). Repeats and quantification are needed for arriving at a conclusion. 

The attempts to repeat immunopanning with Fzd3 and TNFRSF-22 antibodies yielded 

inconsistent results, possibly due to technical issues or a reagent batch being different. 
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Figure 43. Proliferation and differentiation of cells immunopanned with Fzd3 and 
TNFRSF-22 antibodies. 
Cells immunopanned with Fzd3 and TNFRSF-22 antibodies from E14 mouse retinal 
suspension cultured in differentiation media (DM; left panel) on 1x laminin (LAM) and 
10x fibronectin (10x FN), or in proliferation media (PM; right panel) on 10x laminin 
(LAM) and 10x fibronectin (10x FN). Progenitors and neurons quantified by 
morphology, as defined above, and the averages normalized to control 10x FN in PM. 
100% control represents 20 cells (average of 3 experiments). N = 3; Error bars = SEM, p 
< 0.05 with ANOVA. 
 
 

Discussion and future directions 

Here we showed that factor analysis of microarrays from single retinal 

progenitors predicted three subtypes of retinal progenitors. We used bioinformatics 

analysis to predict subtype specific surface markers, Frizzled-3, Frizzled-4, and 

TNFRSF-22. We next demonstrated that cells could be isolated by immunopanning from 

embryonic retinal suspension with antibodies against these surface markers, and that 
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these cells proliferated and, in some cases, differentiated into neurons, suggesting we 

isolated retinal progenitors. Immunopanning of retinal progenitors with Fzd3 yielded 

more cells, and they proliferated more efficiently on fibronectin substrate as compared to 

laminin. Future research will focus on further optimization of immunopanning of retinal 

progenitors, and characterization of their proliferation and differentiation in retinal cell 

types.
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APPENDIX D: Neuroimmune communication (as published in Science)* 

To what degree does the brain influence the body, and vice versa? Considerable 

data in the field of neuroimmunology support the premise that the brain and our mental 

state influences the immune system (Besedovsky and del Rey, 2006; Trakhtenberg, 

2008), and likewise that the immune system influences brain function and mental state 

(Farina et al., 2007; Wilson and Warise, 2008). How do these two systems interact, either 

locally or at a distance? 

At the local level, recent advances have revealed multiple exceptions to the notion 

that central nervous system (CNS) is an immune-privileged site. Among the immune 

responses in the CNS are activation of resident glia cells and macrophages (Farina et al., 

2007; London et al.; Madrigal et al., 2009; Wilson and Warise, 2008), as well as 

infiltration of circulating immune system cells (London et al.). Many of these processes 

rely on signaling cytokines―the well-studied language of the immune system―in their 

communication and modulation of not only immune but also neuronal and glial function 

in synaptic pruning (Stevens et al., 2007), neuroplasticity (Huh et al., 2000), and 

neuroprotection (Farina et al., 2007). In these examples, molecules important in the 

immune system such as major histocompatibility complex (MHC) proteins and 

complement factors are also expressed by neurons and glia and likely contribute to neural 

function. Can the nervous system, in turn, communicate with the immune system through 

neurotransmitters―the well-studied language of the nervous system—to regulate 

inflammation and immunity, or even to feed back and regulate the nervous system itself? 

Evidence for long-distance cross-talk between the nervous and immune systems has 

                                                 
* Trakhtenberg, E.F., and Goldberg, J.L. (2011). Immunology. Neuroimmune communication. Science 334, 
47-48. 
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remained more elusive, other than indirect regulation for example through 

neuroendocrine hormones (Besedovsky and del Rey, 2006). In this issue, two 

independent papers demonstrate how neurotransmitters directly modulate specific cells 

and cellular responses in the immune system at a distance (Figure 44). 

Figure 44. Neuroimmune cross-talk. 
Noradrenaline-secreted from peripheral nerve terminals in the spleen and liver regulates 
pro- and anti-inflammatory cytokine secretion by stimulating specialized T cells. These 
immune cells and cytokines, in turn, could feed back into the nervous system and regulate 
neuroinflammation and neural function. APC, antigen-presenting cell. 

 
Previous work pointed to pathways of direct, long-distance neuro-immune 

modulation. For example, stimulation of the vagus nerve, which originates in the 

brainstem and innervates visceral organs, inhibits cytokine release and attenuates 

inflammatory damage in endotoxemia and sepsis. The vagus nerve stimulates adrenergic 

celiac ganglion neurons that send axons through the splenic nerve to innervate the spleen. 
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There, acetylcholine (ACh) release activates the α7 subunit of the nicotinic ACh receptor 

(nAChR) on macrophages (Wang et al., 2003), thereby inhibiting pro-inflammatory 

tumor-necrosis factor-α (TNF-α) cytokine production. A missing link in this model is 

how does stimulation of adrenergic neurons induce ACh release in the spleen? Now, 

Rosas-Ballina et al. (M. Rosas-Ballina et al., 2011) show that rather than a neuron, a 

splenic T-cell capable of synthesizing and secreting ACh (Rinner and Schauenstein, 

1993) fills this gap. Using transgenic mice expressing eGFP under the control of the 

promoter for choline acetyltransferase (ChAT), an enzyme required for ACh 

biosynthesis, they identified with flow cytometry CD4+/CD44high/CD62Llow/ChAT-

eGFP+ memory T-cells that express β-adrenergic receptors and are located adjacent to 

adrenergic splenic nerve endings, and showed that transplantation of these cells into 

endotoxemic nude mice devoid of T-cells rescued the attenuation of serum TNF-α by 

vagus nerve stimulation, in contrast to CD4+/CD44high/CD62Llow/ChAT-eGFP- cells (M. 

Rosas-Ballina et al., 2011). Furthermore, ChAT siRNA knockdown in T-cells prior to 

transplantation blocked rescue of TNF-α attenuation after vagus nerve stimulation, 

highlighting the requirement for ACh secretion by these splenic T-cells in this 

inflammatory reflex. Considering TNF-α’s and other cytokines’ roles in CNS 

inflammation (Probert et al., 1997), this pathway should also be explored using CNS 

injury and disease models. 

Another neuro-immune long-distance modulation is seen in systemic post-stroke 

immunosuppression, which protects the brain from inflammatory damage (Chamorro et 

al., 2007) while leaving the body prone to infection, rendering infection a major cause of 

stroke-related death in humans (Kimura et al., 2005) and in a mid-cerebral artery 
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APPENDIX E: Contributions to, Soluble adenylyl cyclase activity is necessary for 

retinal ganglion cell survival and axon growth (as published in Journal of 

Neuroscience)* 

As part of the study of the soluble adenylyl cyclase (sAC) in neurons, rat retinal 

ganglion cells (RGCs) were purified and immunostained for components of the cAMP 

signaling pathway, Epac-1, Epac-2, and cAMP itself, and counterstained with phalloidin 

and DAPI (Figure 45). Immunoreactivity for all three molecules was detected in the 

Figure 45. cAMP, Epac-2 and Epac-1 are detected in intracellular RGC compartments 
including nuclei. 
cAMP, PKA regulatory subunit 2B, Epac-2 and Epac-1 are detected in intracellular 
compartments including RGC nuclei. Confocal imaging of dissociated P5 RGCs 
immunostained as marked (green), and counterstained with phalloidin (red) and DAPI 
(blue), to highlight the cells and their nuclei (dotted outlines shown across images), 
respectively. Scale bar, 25 μm.

                                                 
* Corredor, R.G., Trakhtenberg, E.F., Pita-Thomas, W., Jin, X., Hu, Y., and Goldberg, J.L. (2012). Soluble 
adenylyl cyclase activity is necessary for retinal ganglion cell survival and axon growth. J Neurosci 32, 
7734-7744. 
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APPENDIX F: Contributions to, β1-Integrin-Focal Adhesion Kinase (FAK) 

signaling modulates RGC survival (as published in PLoS ONE)* 

Santos, A.R., Corredor, R.G., Obeso, B.A., Trakhtenberg, E.F., Wang, Y., Ponmattam, J., 
Dvoriantchikova, G., Ivanov, D., Shestopalov, V.I., Goldberg, J.L., et al. (2012). β1 
integrin-focal adhesion kinase (FAK) signaling modulates retinal ganglion cell (RGC) 
survival. PLoS One 7, e48332. 

 
As part of the study of the β1 integrin-focal adhesion kinase (FAK) signaling role 

in retinal ganglion cell (RGC) survival, we investigated the role of FAK in RGC survival 

and neurite outgrowth. Postnatal rat RGCs were purified and electroporated with anti-

FAK siRNA or scrambled siRNA control. FAK knock-down decreased RGC survival 

over 2-fold and decreased total neurite length by 1.8 fold (Figure 47). These data 

supported the hypothesis that FAK regulates RGC survival and neurite outgrowth, and 

consistent with the other data in the paper on laminin-integrin signaling in RGC survival, 

suggested that FAK is a potential down-stream effector of laminin-integrin signaling in 

RGC survival. 

                                                 
* Santos, A.R., Corredor, R.G., Obeso, B.A., Trakhtenberg, E.F., Wang, Y., Ponmattam, J., 
Dvoriantchikova, G., Ivanov, D., Shestopalov, V.I., Goldberg, J.L., et al. (2012). β1 integrin-focal adhesion 
kinase (FAK) signaling modulates retinal ganglion cell (RGC) survival. PLoS One 7, e48332. 
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Figure 47. FAK regulates RGC survival and neurite growth. 
Postnatal day 3 RGCs were transfected by electroporation with FAK siRNA or scrambled 
control siRNA and cultured on laminin for 3 days. B. Co-immunostaining with FAK 
(red) and Tuj1 (neuronal class III β-tubulin, green) antibodies 3 days after transfection 
showed significant decrease in FAK immunofluorescence signal in RGCs transfected 
with FAK siRNA (a, white arrows; b), as compared to scrambled control siRNA 
transfected RGCs (c, yellow arrowheads; d). Boxed insets in a, and b represent higher 
magnification images (63X) of a representative cell in each condition. FAK siRNA 
knock-down resulted in (C) decreased RGC survival, and (D) reduced average total 
neurite length as compared to scrambled siRNA control 3 days after transfection. 
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Statistics: Over 100 RGCs per condition were analyzed through at least 3 independent 
experiments. Error bars, SD; Student’s t test (*p < 0.05). Scale bar: 10 µm.
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