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Figure 4.9: Map views of the seismicity rate change in the Salton Sea geothermal field
(SSGF) and its vicinity. β-statistic of 4 days (a) and 30 days (b) after the 1999 Mw
7.1 Hector Mine earthquake relative to the background seismicity (1996-2002). Poly-
gon outlines the SSGF based on the location of the active injection and extraction
wells. Boxes mark the subareas outside of the geothermal field, including the Braw-
ley Seismic Zone (BSZ) and Imperial Fault (IF). Grey dots denote the background
seismicity from 1981 to 2010. Inset shows the location of the Hector Mine earthquake
and the SSGF.
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consistent with our explanation that reduced pore pressure after production increased

the fault strength within the CGF. As the geothermal production grew, the seismicity

rate at the deeper layer remained low, whereas the shallow seismicity rate recovered

and increased to a higher level (Figure 4.11a). The shallow geothermal induced seis-

micity has been proposed to result from reservoir contraction (Segall and Fitzgerald ,

1998), and local effects such as diffusion of pore pressure from injection wells and

temperature change(Majer et al., 2007). Considering the reservoir sitting in a less-

critical stress state inferred above, we propose that the increase in shallow seismicity

could be more dominated by the highly heterogeneous and variable (in time) stress

perturbations at local scales (Figure 4.11b), possibly very close to the production or

injection wells. Because these stress perturbations vary quickly in space and time,

and the average stress level is not close to failure, it is less likely to produce large

earthquakes or remotely triggered seismicity.

4.5 Conclusions

In summary, we studied the fine-scale remote triggering in geothermal fields and

their vicinities to assess the anthropogenic effect on the stress state. We find that the

geothermal production areas, although with high seismicity, are less susceptible to

remote triggering than the surrounding areas. We attribute this absence of triggering

to the reduced pore pressure and lifted effective fault strength due to fluid loss dur-

ing geothermal production. We also propose that the induced seismicity correlated

with production is mainly controlled by highly heterogeneous stress perturbations at
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Figure 4.11: Seismicity distribution and schematic model of stress states within the
geothermal field. (a) Number of shallow earthquakes (< 3 km depth) and deeper
earthquakes (between 3 and 10 km depth) within the geothermal field for the time
period of 1981 to 2011. The dots represent the number of earthquakes every two years.
The reduction in the number of earthquakes occurred in 1987 when the production
operation began. (b) Schematic model of stress states affected by anthropogenic
activity. Net production of the geothermal fluids caused decrease of pore pressure and
higher failure criterion for both shallow and deeper faults, which explains the absence
of remote triggering. At the shallow depth, highly heterogeneous stress perturbations
(blue wiggles) are responsible for induced seismicity. At larger depths, it may take
longer time for the tectonic stress to overcome the higher fault strength.
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shallow depths. The magnitude of these local stress perturbations could be at the

level of tens of MPa(Schoenball et al., 2014). Therefore, it is difficult to infer the av-

erage stress state from induced seismicity alone. Although our observations indicate

a stress state away from failure, tectonic stress will continue to accumulate to balance

the decreased pore pressure (Figure 4.11b). In addition, change in production volume

or hydrological system may also alter the pore pressure. Hence, it is important to

monitor the average stress state inside the geothermal field at fine scales either by

remote triggering or other stress measures.
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Chapter 5

Conclusions and Future Work

This thesis mainly presents how to better understand the causes of triggered/inhibited

earthquakes by imaging the seismic structure and mapping spatiotemporal distribu-

tion of microearthquakes. My research work mainly solved three questions: (1) What

is the possible cause of active seismicity in the southwestern island of Puerto Rico

and seismic quiescence in the north; (2) Whether the active magmatic system still

exists in the crust of the Coso geothermal field; (3) Whether geothermal areas are

more susceptible to dynamic triggering.

In the Puerto Rico region, we have generated the first 3D crustal velocity model

and new relocation catalogs, which can be used for the routine processing in the

Puerto Rico Seismic Network. In the Coso area, we have obtained high-solution 3D

velocity models and high-precision earthquake relocation, from which we have just

extracted part of the information to address the questions regarding magmatic system

and dynamic triggering. We believe the new 3D models together with the relocated

seismicity can provide useful information for investigating other seismologic and tec-

tonic features. In addition, we have only interpreted the upper crustal structure due

to the limit of the data. With additional data sets, such as ambient noise, it is possible
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to detect the deeper structure to better characterize whether the identified magma

mush is fed by a deeper magma chamber.

We demonstrate that seismic tomography combined with relocated earthquakes

can provide a unique access to probing solid Earth’s structure. However, to tackle

seismotectonic puzzles, we could not solely depend on the seismological results. For

example, we have included other geophysical and geochemical studies, the results of

resistivity and density and the content of erupted magma, to interpret the magmatic

system in the Coso geothermal area. To support our model that the loss of pore

pressure results in the absence of dynamic triggering, we also integrate the geode-

tic measurements to show geothermal areas are undergoing the loss of fluid and/or

thermal contraction.

Although my research work shows the consistent results in Coso and Salton Sea

and we imply the loss of pore pressure from the anthropogenic activity is a dominat-

ing effect for the absence of remote triggering, a lot of questions remain unknown.

How much pressure could serve as the threshold for remote triggering? Is there any

quantitative estimate of how the stress is perturbed and released? How much the

induced seismicity depends on the initial natural stress state? Further independent

stress measurement and poroelastic numerical modeling could be useful for answering

these questions.

After investigating the background seismicity in geothermal fields, I have realized

that the anthropogenic activity can largely change the stress state, in the ways of

changing the net pore pressure, perturbing the stress field with tens of MPa, and
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rotating the stress orientation. Thus a large amount of induced seismicity has been

observed in these active geothermal areas. Our research work and some other studies

have suggested that the induced seismicity share the normal-faulting focal mechanisms

in several geothermal fields (Martínez-Garzón et al., 2013; Schoenball et al., 2014). It

is necessary to analyze the sequence of induced seismicity with better data coverage

to characterize more different features from natural earthquakes. If adding more

permanent broadband stations near the wells, it is possible to obtain the long-term

earthquake sequence and help differentiate whether a certain earthquake is natural or

induced. In addition, denser array will improve the detection of smaller earthquakes,

relocation of earthquakes, and determination of magnitude and focal mechanisms.

Besides geothermal areas, increased seismicity has been observed in oil and gas

production area, wastewater disposal regions, and areas with mining activity. Both

natural and anthropogenic forces play roles in affecting the stress state in these areas.

The detection of remote triggering has been proven to be one method to detect the

stress state. Our results show that the geothermal production process can inhibit

remote triggering and induce a great amount of shallow seismicity. To obtain the

systematic observation, we need to dissect more cases in these different anthropogenic

settings to analyze how anthropogenic activities affect the stress state in the ways of

inhibiting and promoting the failure of seismicity.

Although the induced seismicity has been regarded to associate with the injection

and production processes, their physical mechanism and possible seismic hazard are

not well understood. To explain the induced seismicity, the current hypotheses in-
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clude: (1) fluid injection induced earthquakes by reducing the effective normal stress

(Hubbert and Rubey , 1959; Nicholson and Wesson, 1992); (2) well stimulation and

reservoir volume change resulted in elastic compaction of brittle materials (Segall ,

1989; Mossop and Segall , 1999); (3) induced seismicity that occur at the undisturbed

areas with kilometers away or deeper than wells is caused by the diffusion of pore

pressure from the injection wells (Simpson et al., 1988). However, there is no uniform

theory to account for various observations from fields. For example, some larger earth-

quakes occur once the production rate is largely increased, while the fluid injection

remains negligible (Frohlich and Brunt , 2013). Some earthquakes occur with respect

to fluid injection, and in other areas the time lag is long (Simpson et al., 1988). To

advance the understanding of the induced seismicity and the controlling factors, we

need to investigate more earthquake sequence in different settings closely combining

with other geophysical studies, such as studies regarding the stress measurement,

hydraulic conditions, and presence of pre-existing faults.
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