Off-campus University of Miami users: To download campus access dissertations, please use the following link to log into our proxy server with your University of Miami CaneID and Password.

Non-University of Miami users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Publication Date

2008-09-23

Availability

UM campus only

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PHD)

Department

Molecular Cell and Developmental Biology (Medicine)

Date of Defense

2008-08-05

First Committee Member

David Helfman - Committee Chair

Second Committee Member

Niramol Savaraj - Committee Member

Third Committee Member

Kermit L. Carraway - Committee Member

Fourth Committee Member

Theodore J. Lampidis - Mentor

Abstract

Hypoxic regions found in most solid tumors often contain cells which are resistant to various cancer therapies. However, hypoxia also forces cells to rely solely on the catabolism of glucose through glycolysis for ATP production and survival, thereby creating a therapeutic window that can be exploited by glycolytic inhibitors, such as 2-deoxy-D-glucose (2-DG). Previous studies in our lab demonstrated that activation of Hypoxia Inducible Factor (HIF-1) in hypoxic tumor cells confers resistance to glycolytic inhibition by 2-DG. In surveying a number of tumor types for differences in intrinsic levels of HIF-1 alpha under hypoxia, we found that pathways upstream of HIF -- i.e. AKT and mammalian target of rapamycin (mTOR) -- have significantly reduced activity in 2 human non-small lung cancer cell lines (NSCLC) as compared to 4 small cell lung cancer cell (SCLC) lines. This reduced activity of AKT and mTOR correlated with increased sensitivity to 2-DG under hypoxia. Since HIF-1 alpha translation is regulated by the mammalian target of rapamycin (mTOR), we examined the effects of blocking mTOR with an analog of rapamycin (CCI-779) in SCLC cells which express high levels of mTOR activity. Under hypoxia, treatment with CCI-779 resulted in HIF-1 alpha down-regulation. Furthermore, CCI-779 potentiated the cytotoxic effects of 2-DG in hypoxic SCLC cells. Conversely, CCI-779 did not increase 2-DG toxicity in NSCLC lines that do not express HIF, SCLC lines treated with siRNA against HIF-1 alpha, or HIF-deficient mutants. These latter results support the hypothesis that, although mTOR modulates numerous downstream pathways, mTOR inhibition by CCI-779 increases the toxicity of 2-DG in hypoxic cells through down-regulation of HIF-1 alpha. Overall, our findings show that CCI-779 hyper-sensitizes HIF-expressing hypoxic tumor cells to 2-DG. Additionally, our results suggest that the intrinsic expression of AKT, mTOR, and HIF in many tumor types may be important predictors of clinical responsiveness to 2-DG and could be used to guide future treatment decisions on whether to use 2-DG alone or in combination with an mTOR inhibitor.

Keywords

Lung Cancer; 2-Deoxy-D-Glucose; CCI-779; MTOR

Share

COinS