Publication Date

2008-12-04

Availability

Open access

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PHD)

Department

Molecular and Cellular Pharmacology (Medicine)

Date of Defense

2008-10-21

First Committee Member

Charles W. Luetje - Committee Chair

Second Committee Member

Jeffrey L. Goldberg - Committee Member

Third Committee Member

John L. Bixby - Committee Member

Fourth Committee Member

Vladlen Z. Slepak - Mentor

Fifth Committee Member

Donald F. Ready - Outside Committee Member

Abstract

Phototransduction is a well characterized system for study of G protein coupled receptor (GPCR) signaling. The GPCR rhodopsin couples to the heterotrimeric G protein transducin. Light-stimulated activation of transducin in turn activates phosphodiesterase (PDE), leading to closure to cGMP-gated channels and inhibition of glutamate release. Rod and cone photoreceptors are highly polarized neurons consisting of the outer segment (OS) where phototransduction biochemistry occurs, the inner segment containing mitochondria and other organelles, the nuclear layer, an axon, and a glutamatergic synapse. Upon illumination, activated G protein transducin redistributes from the rod OS (where it is localized in the dark) to the inner compartments of the cell. Interestingly, cone transducin does not translocate in light. Opposite to this, visual arrestin migrates from the inner compartments to the OS, where it binds to rhodopsin. Previous reports from other groups and our lab argue for either an active or passive mechanism for transducin and arrestin redistribution. Our lab has shown that arrestin migration occurs by diffusion which is restricted by molecular sinks (Nair et al, 2005b). The focus of my dissertation was to unravel the molecular mechanism of rod transducin translocation. Specifically, I found energy (ATP) was not required for transducin movement within photoreceptors. Also, I found that the disc membranes of the rod outer segments as well as protein-protein interactions with retinal guanylate cyclase serve to restrict transducin diffusion through the cell. In addition, I used the insights gained from these studies of transducin to re-examine the relationship of other G proteins' subcellular localization and signal transduction. Ultimately, I found that most G proteins do not undergo subunit dissociation under physiological activating conditions.

Keywords

G Protein; Signal Transduction; Subcellular Localization; Photoreceptors; Neurons; Transducin

Share

COinS