Off-campus University of Miami users: To download campus access dissertations, please use the following link to log into our proxy server with your University of Miami CaneID and Password.

Non-University of Miami users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Publication Date

2009-07-16

Availability

UM campus only

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PHD)

Department

Molecular and Cellular Pharmacology (Medicine)

Date of Defense

2009-06-24

First Committee Member

Rakesh Singal - Committee Chair

Second Committee Member

Dorraya El-Ashry - Committee Member

Third Committee Member

Charles Luetje - Committee Member

Fourth Committee Member

Kerry Burnstein - Mentor

Fifth Committee Member

Diane Robins - Outside Committee Member

Abstract

Steroid receptors are important in the pathogenesis of a variety of disease states and modulate cellular processes through differential gene expression. Therefore, understanding the regulation of steroid receptors is essential. Environmental sodium arsenite, a toxin associated with male infertility, and arsenic trioxide, a possible prostate cancer therapeutic agent, are inorganic trivalent semimetals. The mechanism of arsenic action in male urogenital tract tissues is not clear. Since androgen receptor (AR) plays an important role in spermatogenesis and prostate cancer, we explored the possibility that trivalent arsenic regulates AR function. We found that arsenic inhibited AR transcriptional activity in prostate cancer and Sertoli cells by inhibiting AR recruitment to an AR target gene enhancer in vivo. Consistent with a deficiency in AR chromatin binding, arsenic disrupted AR amino and carboxyl-termini interaction. Furthermore, ATO caused a significant decrease in prostate cancer cell proliferation that was more pronounced in cells expressing AR compared to cells depleted of AR. Thus, arsenic-induced male infertility may be due to inhibition of AR activity and arsenic may serve as an effective therapeutic option in prostate cancer. Rac1, a Rho GTPase, modulates a variety of cellular processes and is hyperactive in cancer. Estrogen receptor (ER) regulates genes associated with cell proliferation, tumor development, and survival in breast cancer. Therefore, we examined the possibility of crosstalk between Rac1 and ER signaling. We found that Rac1 enhanced ER transcriptional activity in breast cancer cell lines. Vav3, a Rho guanine nucleotide exchange factor, was an upstream activator and P21/Cdc42/Rac1 activating kinase-1 (PAK-1) was a downstream effector of Rac1 enhancement of ER activity. These results suggest that Rac1 may be a beneficial therapeutic target. To test this hypothesis, we used EHT 1864, a small molecule Rac1 inhibitor. EHT 1864 inhibited ER transcriptional activity and estrogen-induced breast cancer cell proliferation. Furthermore, EHT 1864 inhibited ER activity by downregulation of ER mRNA and protein levels. Since ER plays a critical role in the pathogenesis of breast cancer and EHT 1864 inhibits ER activity and breast cancer cell proliferation, Rac1 inhibition is a novel and compelling therapeutic target in breast cancer.

Keywords

Estrogen Receptor; Androgen Receptor; Breast Cancer; Rac1; Male Infertility; Prostate Cancer; Arsenic

Share

COinS