Off-campus University of Miami users: To download campus access dissertations, please use the following link to log into our proxy server with your University of Miami CaneID and Password.

Non-University of Miami users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Publication Date

2010-08-06

Availability

UM campus only

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PHD)

Department

Biomedical Engineering (Engineering)

Date of Defense

2010-08-02

First Committee Member

Baruch B. Lieber - Committee Chair

Second Committee Member

Brant Watson - Committee Member

Third Committee Member

Fotios Andreopoulos - Committee Member

Fourth Committee Member

Fabrice Manns - Committee Member

Fifth Committee Member

Jaehoon Seong - Outside Committee Member

Abstract

According to the American Heart Association about 795,000 people suffer a stroke each year. Of those strokes almost 140,000 are fatal; this makes Stroke the third leading cause of death in the United States behind coronary heart disease and cancer. Hemorrhagic strokes are caused when an artery in the brain ruptures, such as a ruptured aneurysm. One possible treatment for cerebral aneurysm is a porous tubular structure, similar to a stent, called a flow diverter. A flow diverter can be placed across the neck of a cerebral aneurysm to induce the cessation of flow and initiate the formation of an intra-aneurysmal thrombosis. This excludes the aneurysm from the parent artery and returns the flow of blood to normal. The process of flow diversion alone has been shown to take months to fully exclude the aneurysm. It is possible however with an adjuvant therapy called photothrombosis to accelerate this process so that the aneurysm is excluded within minutes. Previous flow diverting devices have been analyzed to determine optimal characteristics, such as braiding angle and wire diameter. From this information a new optimized device was designed and is now in the process of being tested. In order to evaluate the effect of the device, a model must be created. One such model is the rabbit elastase induced aneurysm, which was characterized so that elastomer models could be created for in vitro studies. Particle Image Velocimetry (PIV) is a method of analysis that utilizes very small glass spheres (between 8 mu m and 12 mu m in diameter) to determine the velocity vectors of fluid flow in an in vitro model. These velocities can be used to calculate hydrodynamic circulation and kinetic energy inside an elastomer model of the elastase induced aneurysm. By comparing these values inside the aneurysm with values for previously developed diverters and a control without a diverter, it can be shown that despite changes in the braiding angle and individual wire thickness that the behavior of the devices is not significantly different (P > 0.05). Flow diversion is also being used in concert with photothrombosis. A flow diverter is used to exclude the neck remnant from the parent vessel and to provide a scaffold for the remodeling of the neck. This combination of techniques allows for very fast and near complete occlusion of the aneurysm thereby excluding the aneurysm from the parent vessel and eliminating the risk of a rupture.

Keywords

Aneurysm; Photodynamic Therapy; Photothrombosis; Particle Image Velocimetry; PIV; Stroke

Share

COinS