Publication Date




Embargo Period


Degree Type


Degree Name

Doctor of Philosophy (PHD)


Mechanical Engineering (Engineering)

Date of Defense


First Committee Member

Xiangyang Zhou

Second Committee Member

Hongtan Liu

Third Committee Member

Michael Swain

Fourth Committee Member

Yiding Cao


Hydrogen production from reforming bio-fuels is considered as one of the major ways of utilizing renewable energy sources. Conventionally, most reforming catalysts are noble metal catalysts with high operation temperature above 1000 °C, which result in low thermal efficiency, long start-up time and use of high grade materials. These reasons hinder the development of hydrogen production technology. Novel self-sustained electrochemical promotion (SSEP) catalysts were developed and evaluated for heavy hydrocarbon reforming at relatively low temperatures, 450 to 650 °C. Typically, the SSEP catalysts contain NiO/Ni/CuO/Cu/CeO2 as a selective anodic phase, La0.9Sr0.1MnO3 (LSM) as a selective cathodic phase, yttria stabilized zirconia (YSZ) as an oxygen ion conduction phase, and Ni/Cu also as an electronic conduction phase. The reforming performance of the SSEP catalysts was evaluated using a fixed bed reforming reactor for n-pentadecane. A commercially available noble metal containing catalyst, 2.4 %Pt on CeO2 support, was evaluated using exactly the same method. The following conclusions can be drawn as a consequence of this study: 1) The fuel conversion for the SSEP catalyst was 10 folds of that for the noble metal catalyst and the yield of hydrogen and carbon monoxide for the SSEP catalysts was 100 folds of that for the noble metal catalyst at 450°C. 2) The mechanism of the SSEP catalysts was proved by the experimental results. 3) The study of the effect of each component and the effect of the concentration clearly reveals that the performance of the SSEP catalysts can be further improved to a higher level by many ways. In addition, all the catalysts were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Transmission Electron Microscopy (TEM) and Accelerated Surface Area and Porosimetry Analyzer 2020 (ASAP 2020).


electrochemical promotion; self sustained; catalyst; reforming; heavy hydrocarbon; low temperature