Publication Date



Open access

Degree Type


Degree Name

Doctor of Philosophy (PHD)


Electrical and Computer Engineering (Engineering)

Date of Defense

March 2010

First Committee Member

Xiaodong Cai - Committee Chair

Second Committee Member

James W. Modestino - Committee Member

Third Committee Member

Akmal Younis - Committee Member

Fourth Committee Member

Dimitris Papamichail - Committee Member

Fifth Committee Member

Kamal Premaratne - Committee Member


Recent research in experimental and computational biology has revealed the necessity of using stochastic modeling and simulation to investigate the functionality and dynamics of gene networks. However, there is no sophisticated stochastic modeling techniques and efficient stochastic simulation algorithms (SSA) for analyzing and simulating gene networks. Therefore, the objective of this research is to design highly efficient and accurate SSAs, to develop stochastic models for certain real gene networks and to apply stochastic simulation to investigate such gene networks. To achieve this objective, we developed several novel efficient and accurate SSAs. We also proposed two stochastic models for the circadian system of Drosophila and simulated the dynamics of the system. The K-leap method constrains the total number of reactions in one leap to a properly chosen number thereby improving simulation accuracy. Since the exact SSA is a special case of the K-leap method when K=1, the K-leap method can naturally change from the exact SSA to an approximate leap method during simulation if necessary. The hybrid tau/K-leap and the modified K-leap methods are particularly suitable for simulating gene networks where certain reactant molecular species have a small number of molecules. Although the existing tau-leap methods can significantly speed up stochastic simulation of certain gene networks, the mean of the number of firings of each reaction channel is not equal to the true mean. Therefore, all existing tau-leap methods produce biased results, which limit simulation accuracy and speed. Our unbiased tau-leap methods remove the bias in simulation results that exist in all current leap SSAs and therefore significantly improve simulation accuracy without sacrificing speed. In order to efficiently estimate the probability of rare events in gene networks, we applied the importance sampling technique to the next reaction method (NRM) of the SSA and developed a weighted NRM (wNRM). We further developed a systematic method for selecting the values of importance sampling parameters. Applying our parameter selection method to the wSSA and the wNRM, we get an improved wSSA (iwSSA) and an improved wNRM (iwNRM), which can provide substantial improvement over the wSSA in terms of simulation efficiency and accuracy. We also develop a detailed and a reduced stochastic model for circadian rhythm in Drosophila and employ our SSA to simulate circadian oscillations. Our simulations showed that both models could produce sustained oscillations and that the oscillation is robust to noise in the sense that there is very little variability in oscillation period although there are significant random fluctuations in oscillation peeks. Moreover, although average time delays are essential to simulation of oscillation, random changes in time delays within certain range around fixed average time delay cause little variability in the oscillation period. Our simulation results also showed that both models are robust to parameter variations and that oscillation can be entrained by light/dark circles.


Circadian Rhythm; Importance Sampling; Weighted Stochastic Simulation Algorithm; Unbiased Tau-leap Method; K-leap Method; Stochastic Simulation Algorithm