Publication Date

2010-05-17

Availability

Open access

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PHD)

Department

Microbiology and Immunology (Medicine)

Date of Defense

May 2010

First Committee Member

Khaled Tolba - Committee Member

Second Committee Member

John Bethea - Committee Member

Third Committee Member

Diana M. Lopez - Committee Member

Fourth Committee Member

Kurt Schesser - Committee Member

Fifth Committee Member

Edward W. Harhaj - Mentor

Sixth Committee Member

Joseph Pagano - Outside Committee Member

Abstract

Induction of type I interferons by the transcription factors IRF3 and IRF7 is essential in the initiation of antiviral innate immunity. Activation of IRF3/7 requires C-terminal phosphorylation by the upstream kinases TBK1/IKKi, where IRF3/7 phosphorylation promotes dimerization, and subsequent nuclear translocation to the IFN-beta promoter. Recent studies have described the ubiquitin-editing enzyme A20 as a negative regulator of IRF3 signaling by associating with TBK1/IKKi, however the regulatory mechanism of A20 inhibition remains unclear. Here we describe the adaptor protein, TAX1BP1, as a key regulator of A20 function in terminating signaling to IRF3. Murine embryonic fibroblasts (MEFs) deficient in TAX1BP1 displayed increased amounts of IFN-beta production upon viral challenge compared to WT MEFs. TAX1BP1 inhibited virus-mediated activation of IRF3 at the level of TBK1/IKKi. TAX1BP1 and A20 blocked antiviral signaling by disrupting K63-linked polyubiquitination of TBK1/IKKi independently of the A20 deubiquitination (DUB) domain. Furthermore, TAX1BP1 was required for A20 effector function as A20 was defective for the targeting and inactivation of TBK1 and IKKi in Tax1bp1–/– MEFs. Additionally, we found the E3 ubiquitin ligase TRAF3 to play a critical role in promoting TBK1/IKKi ubiquitination. Collectively, our results demonstrate TBK1/IKKi to be novel substrates for A20 and further identifies a novel mechanism whereby A20 and TAX1BP1 restrict antiviral signaling by disrupting a TRAF3/TBK1/IKKi signaling complex. Several viruses utilize a number of strategies to evade the host innate immune response by inhibiting the production of type I interferons. The Human T-cell leukemia virus type 1 (HTLV-1) has been shown to block interferon signaling, however the mechanism of inhibition is poorly understood. We show here that the HTLV-1 encoded protein, Tax plays a critical role in blunting the activation of type I interferons. Tax expression rendered MEFs hyper-permissive in supporting virus replication. Correspondingly, Tax blocked the production of IFN-beta. Interestingly, Tax did not require NEMO interaction to inhibit antiviral signaling to IRF3/7. Instead, Tax targeted RIP1 and further blocked IRF7 K63-linked polyubiquitination. Altogether, we show that Tax inhibits IFN activation by disrupting the ubiquitin dependent activation of IRF7 mediated by RIP1.

Keywords

Ubiquitin Editing Complex; Signal Transduction

Share

COinS