Publication Date

2012-02-16

Availability

Open access

Embargo Period

2012-02-16

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PHD)

Department

Molecular and Cellular Pharmacology (Medicine)

Date of Defense

2012-02-06

First Committee Member

Keith A. Webster

Second Committee Member

Pedro Salas

Third Committee Member

Peter Buchwald

Fourth Committee Member

Antonello Pileggi

Fifth Committee Member

Howard M. Prentice

Abstract

Muscle may experience hypoglycemia during ischemia or insulin infusion. During severe hypoglycemia energy production is blocked and an increase in AMP:ATP activates the energy sensor and putative insulin-sensitizer AMP-dependent protein kinase (AMPK). AMPK promotes energy conservation and survival by shutting down anabolism and activating catabolic pathways. We investigated the molecular mechanism of a unique glucose stress defense pathway involving AMPK-dependent, insulin-independent activation of the insulin signaling pathway. Results from my work showed that the central insulin signaling pathway is rapidly activated when cardiac and skeletal myocytes are subjected to conditions of glucose starvation. The effect occurred independently of insulin receptor ligands (insulin and IGF-1). There was a >10-fold increase in the activity of Akt as determined by phosphorylation on both Thr308 and Ser473. Phosphorylation of glycogen synthase 3 beta (GSK3b) increased in parallel, but phosphorylation of ribosomal 70S subunit-S6 protein kinase (S6K) and the mammalian target of rapamycin complex 1 (mTORC1) decreased. We identified AMPK as an intermediate in this signaling network; AMPK was activated by glucose starvation and many of the effects were mimicked by the AMPK-selective activator aminoimidazole carboxamide ribonucleotide (AICAR) and blocked by AMPK inhibitors. Glucose starvation increased the phosphorylation on IRS-1 on Ser789, but phosphomimetics revealed that this conferred negative regulation. Glucose starvation enhanced tyrosine phosphorylation of IRS-1 and the insulin receptor, effects that were blocked by AMPK inhibition and mimicked by AICAR. In vitro kinase assays using purified proteins confirmed that the insulin receptor is a direct target of AMPK. Insulin receptor kinase activity was essential for cardiac myocytes to survive gluose starvation as inhibition of the IR led to increased cell death in glucose-starved myocytes. Selective activation of mTORC2 by glucose starvation to increase Akt-Ser473 phosphorylation was dependent on the presence of rictor. SIN1 also seemed to be instrumental in the activation of mTORC2 as its levels and binding to rictor increased under glucose starvation. AMPK-mediated activation of the insulin signaling pathway conferred significant protection against the stresses of glucose starvation. Glucose starvation promoted energy conservation, augmented glucose uptake and enhanced insulin sensitivity in an AMPK- and Akt-dependent manner. My results describe a novel ligand-independent and AMPK-dependent activation of the insulin signaling pathway via direct phosphorylation and activation of the IR followed by activation of PI3K and Akt. These results may be relevant in conditions of myocardial ischemia superimposed with type 2 diabetes where AMPK could directly modify the IR to promote cell survival and confer protection.

Keywords

AMPK; Akt; glucose starvation; cardiac myocytes; insulin receptor; skeletal muscle; mTOR-rictor; phosphorylation

Share

COinS