Publication Date

2008-04-18

Availability

Open access

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PHD)

Department

Civil, Architectural and Environmental Engineering (Engineering)

Date of Defense

2008-03-25

First Committee Member

ANTONIO NANNI - Committee Chair

Second Committee Member

CHANG-JEN LAN - Committee Co-Chair

Third Committee Member

MICHAEL PHANG - Committee Member

Fourth Committee Member

JAMES ENGLEHARDT - Committee Member

Fifth Committee Member

MURAT ERKOC - Committee Member

Abstract

Travelers experience different transportation-related problems on roadways ranging from congestion, delay, and crashes, which are partially due to growing background traffic and traffic generated by new developments. With regards to congestion, metropolitan planning organizations (MPOs) pursue a variety of plans for mitigating congestion. These plans include, amongst other measures, imposing impact fees. The current research evaluates how delay and safety can be incorporated in the mitigation process as special impact fees. This study also evaluates traffic projection methodologies used in traffic impact studies. Traffic volume is a critical factor in determining both current and future desired and undesired highway operations. Highway crashes are also influenced by traffic volume, as a higher frequency of crashes is expected at more congested locations and vice versa. Accurately forecasted traffic data is required for accurate future planning, traffic operations, safety evaluation, and countermeasures. Adhering to the importance of accurate traffic projection, this study introduces a simplistic traffic projection methodology for small-scale projection utilizing three parameters logistic function as a forecasting tool. Three parameters logistic function produced more accurate future traffic prediction compared to other functions. When validation studies were performed, the coefficient of correlation was found to be above 90 percent in each location. The t-values for the three parameters were highly significant in the projection. The confidence intervals have been calculated at a 95 percent confidence level using the delta method to address the uncertainty and reliability factor in the projection using logistic function. A delay mitigation fee resulting from increases in travel time is also analyzed in this research. In regular traffic flow, posted speed limit is the base of measuring travel time within the segment of the road. The economic concept of congestion pricing is used to evaluate the impact of this travel time delay per unit trip. If the relationship between the increase in time and trip is known, then the developer can be charged for the costs of time delays for travelers by using that relationship. The congestion pricing approach determines the average and marginal effect of the travel time. With the known values of time, vehicle occupancy, and number of travel days per year, the extra cost per trip caused by additional trips is estimated. This cost becomes part of the mitigation fee that the developer incurs as a result of travel time delays for the travelers due to the development project. Using the Bureau of Public Road (BPR) travel time function and parameters found in 2000 HCM (Highway Capacity Manual), the average and marginal travel times were determined. The value of time was taken as $7.50 per hour after reviewing different publications, which relate it to minimum wage. The vehicle occupancy is assumed as 1.2 persons per vehicle. Other assumptions include 261 working days per year and 4 percent rate of return. The total delay impact fee will depend on the number of years needed for the development to have effect. Since the developer is charged a road impact fee due to constructions cost for the road improvement, the delay mitigation fee should be credited to the road impact fee to avoid double charging the developer. As an approach to incorporate safety into mitigation fees, the study developed a crash prediction model in which all factors significantly influencing crash occurrences are considered and modeled. Negative binomial (NB) is selected as the best crash modeling distribution among other generalized linear models. The developed safety component of the mitigation fee equation considers scenarios in which the proposed new development is expected to increase crash frequency. The mitigation fee equation is designed to incorporate some roadway features and traffic characteristics generated by the new development that influence crash occurrence. Crash reduction factors are introduced and incorporated in the safety mitigation fees equation. The difference between crash frequency before and after the development is multiplied by the crash cost then divided by the trips to obtain crash cost per trip. Crash cost is taken as $28,000/crash based on literature review. To avoid double charging the developer, either the road impact fee is applied as a credit to the delay mitigation fee or vice versa. In summary, this study achieved and contributed the following to researchers and practitioners: ... Developed logistic function as a simplified approach for traffic projection ... Developed crash model for crash prediction ... Developed safety mitigation fee equation utilizing the crash modeling ... Developed delay mitigation fee equation using congestion pricing approach

Keywords

HIGHWAY SAFETY; TRAVEL DELAY; IMPACT FEE; MITIGATION; TRAFFIC PROJECTION

Share

COinS