Publication Date



Open access

Embargo Period


Degree Type


Degree Name

Doctor of Philosophy (PHD)


Physics (Arts and Sciences)

Date of Defense


First Committee Member

Thomas L. Curtright

Second Committee Member

Luca Mezincescu

Third Committee Member

Fulin Zuo

Fourth Committee Member

Carolyne Van Vliet

Fifth Committee Member

Alexander Dvorsky


The author of this thesis discusses two topics in elementary particle physics: n-ary algebras and their applications to M-theory (Part I), and functional evolution and Renormalization Group flows (Part II). In part I, Lie algebra is extended to four different n-ary algebraic structure: generalized Lie algebra, Filippov algebra, Nambu algebra and Nambu-Poisson tensor; though there are still many other n-ary algebras. A natural property of Generalized Lie algebras — the Bremner identity, is studied, and proved with a totally different method from its original version. We extend Bremner identity to n-bracket cases, where n is an arbitrary odd integer. Filippov algebras do not focus on associativity, and are defined by the Fundamental identity. We add associativity to Filippov algebras, and give examples of how to construct Filippov algebras from su(2) , bosonic oscillator, Virasoro algebra. We try to include fermionic charges into the ternary Virasoro-Witt algebra, but the attempt fails because fermionic charges keep generating new charges that make the algebra not closed. We also study the Bremner identity restriction on Nambu algebras and Nambu-Poisson tensors. So far, the only example 3-algebra being used in physics is the BLG model with 3-algebra A4, describing two M2-branes interactions. Its extension with Nambu algebra, BLG-NB model, is believed to describe infinite M2-branes condensation. Also, there is another propose for M2-brane interactions, the ABJM model, which is constructed by ordinary Lie algebra. We compare the symmetry properties between them, and discuss the possible approaches to include these three models into a grand unification theory. In Part II, we give an approximate solution for Schroeder’s equations, based on series and conjugation methods. We use the logistic map as an example, and demonstrate that this approximate solution converges to known analytical solutions around the fixed point, around which the approximate solution is constructed. Although the closed-form solutions for Schroeder’s equations can not always be approached analytically, by fitting the approximation solutions, one can still obtain closed-form solutions sometimes. Based on Schroeder’s theory, approximate solutions for trajectories, velocities and potentials can also be constructed. The approximate solution is significantly useful to calculate the beta function in renormalization group trajectory. By “wrapping” the series solutions with the conjugations from different inverse functions, we generate different branches of the trajectory, and construct a counterexample for a folk theorem about limited cycles.


n-ary algebra; Nambu-algebra; BLG; functional method; beta function; limit cycle