Off-campus University of Miami users: To download campus access theses, please use the following link to log into our proxy server with your University of Miami CaneID and Password.

Non-University of Miami users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Publication Date

2008-01-01

Availability

UM campus only

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Microbiology and Immunology (Medicine)

Date of Defense

2008-07-31

First Committee Member

Lawrence Boise - Committee Member

Second Committee Member

Kurt Schesser - Committee Member

Third Committee Member

Enrique A. Mesri - Mentor

Abstract

Mechanistic insights on molecular and cellular mechanisms whereby KSHV induces Kaposi?s sarcoma (KS) are key for our understanding of KS tumors and for the development of new therapies. We have previously developed an animal model for KSHV induced KS using murine bone marrow cells transfected with a KSHVBac36. We found that although these cells lacked attributes of transformed cells in vitro, they were able to cause KS-like tumors in vivo. In vivo tumorigenesis correlated with upregulation of both KSHV lytic genes and host angiogenesis suggesting that that cues provided from the microenvironment played a major role in regulating viral and host gene expression related with KSHV-induced tumorigenesis. Our goal thus, was to identify these molecular cues regulating pathogenic gene expression in KSHV infected cells in vivo. An important difference between cells kept in vitro versus in vivo is the lack of environmental extracellular matrix (ECM) signals. Therefore the mECK36 cells were cultured in vitro in matrigel, a basement membrane preparation rich in ECM proteins and its individual components, to discern the effect of host signaling by the ECM on KSHV infected cells. Investigation of gene expression through Real Time RT-PCR identified several viral and host genes associated with tumorigenesis such as KSHV vGPCR and angiogenesis associated VEGF and EGF- receptors were upregulated in response to this environment. Further analysis of the molecular activity of the cell indicated the change in transcription was due to the activation of integrin signaling, as assessed by phosphorylation of the Focal Adhesion Kinase (FAK) protein. Our results show that integrin signaling occurring in vivo through interaction with ECM serves to enhance the pathogenic viral and host gene expression of KSHV infected cells and that EGFR upregulation can be correlated with these conditions. These results points to the integrin signaling pathway or the EGF-Receptor as promising targets for therapy and prevention of KS tumors.

Keywords

Kaposi's Sarcoma; Kaposi's Sarcoma Herpesvirus; Extracellular Matrix; Epidermal Growth Factor Receptor; Matrigel

Share

COinS