Document Type

Article

Publication Date

12-2007

Abstract

We report analytic formulas for the elements of the e 2 X 2 cross-spectral density matrix of a stochastic electromagnetic anisotropic beam propagating through the turbulent atmosphere with the help of vector integration. From these formulas the changes in the spectral density (spectrum), in the spectral degree of polarization, and in the spectral degree of coherence of such a beam on propagation are determined. As an example, these quantities are calculated for a so-called anisotropic electromagnetic Gaussian Schell-model beam propagating in the isotropic and homogeneous atmosphere. In particular, it is shown numerically that for a beam of this class, unlike for an isotropic electromagnetic Gaussian Schell-model beam, its spectral degree of polarization does not return to its value in the source plane after propagating at sufficiently large distances in the atmosphere. It is also shown that the spectral degree of coherence of such a beam tends to zero with increasing distance of propagation through the turbulent atmosphere, in agreement with results previously reported for isotropic beams.

Comments

This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website:http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16909. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Included in

Physics Commons

Share

COinS