Document Type

Article

Publication Date

6-2009

Abstract

Using scattering matrices and the angular spectrum representation of waves, we develop the analytical theory of scattering of random scalar waves from random collections of particles, valid under the first Born approximation. We demonstrate that in the calculation of far-field statistics, such as the spectral density and the spectral degree of coherence, the knowledge of the pair-structure factor of the collection is crucial. We illustrate our analytical approach by considering a numerical example involving scattering of two partially correlated plane waves from a random distribution of spheres.

Comments

This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-34-12-1762. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.

Included in

Physics Commons

Share

COinS