Modulation of the Navigational Strategy of Insects in Controlled Temperature Environments

Joseph Shomar
University of Miami, jws123@miami.edu

Anggie Ferrer
University of Miami

Josh Forer
University of Miami, j.forer@miami.edu

Tom Zhang
University of Miami, t.zhang15@umiami.edu

Mason Klein
University of Miami, klein@miami.edu

Recommended Citation

Shomar, Joseph; Ferrer, Anggie; Forer, Josh; Zhang, Tom; and Klein, Mason, "Modulation of the Navigational Strategy of Insects in Controlled Temperature Environments" (2018). 2018 Entries. 2.
https://scholarlyrepository.miami.edu/ugr_rcif_2018/2
Modulation of the Navigational Strategy of *Drosophila* in Controlled Temperature Environments

Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein

Background Information

Why Drosophila Larvae?
- Simple model organism
- ~10^4 neurons with a central brain
- Complex but quantifiable behavior
- Optical transparency
- Biological tools

Objectives
- Understand modulation of fundamental components of motion in variable temperature environment
- Decouple causes of behavioral changes

Hypothesis
- *Drosophila* will exhibit quantifiably different locomotion when experiencing different temperature stimuli
- Modulation of locomotion should depend on a (possibly linear) combination of physical changes and sensory inputs

Method
- Control temperature stimulus with one of the below metal platforms
- Allow larvae to freely navigate platforms and record trajectories
- Segment trajectories into components using computer vision and extract metrics using MATLAB

Results

Temperature Insensitive Mutants

Analysis

Why the Similarities? Proprioceptive Feedback!
- Faster with increasing temperature and older age
- Speed independent of temperature sensing
- Turn rate mostly independent of temperature sensing
- Feedback input ties together speed and turn rate

Conclusion

Future Work
- Incorporate moat design into all platforms
- Use spatially invariant experiments for function modeling
- Use temporally invariant experiments to analyze \(T vs \frac{dT}{dt} \)
- Use different temperature insensitive mutants

Significance & Application
- Develops methodology for decoupling previously unseparated factors that cause behavioral changes
- Can potentially be scaled up to more complex organisms
- Method by which more can be learned about brain function