1-1-2018

Modulation of the Navigational Strategy of Insects in Controlled Temperature Environments

Joseph Shomar
University of Miami, jws123@miami.edu

Anggie Ferrer
University of Miami

Josh Forer
University of Miami, j.forer@miami.edu

Tom Zhang
University of Miami, t.zhang15@umiami.edu

Mason Klein
University of Miami, klein@miami.edu

Recommended Citation

Shomar, Joseph; Ferrer, Anggie; Forer, Josh; Zhang, Tom; and Klein, Mason, "Modulation of the Navigational Strategy of Insects in Controlled Temperature Environments" (2018). 2018 Entries. 2.
https://scholarlyrepository.miami.edu/ugr_rcif_2018/2

This Poster is brought to you for free and open access by the Undergraduate Research, Creativity and Innovation Forum (RCIF) at Scholarly Repository. It has been accepted for inclusion in 2018 Entries by an authorized administrator of Scholarly Repository. For more information, please contact repository.library@miami.edu.
Background Information

Why Drosophila Larvae?
- Simple model organism
- 10^4 neurons with a central brain
- Complex but quantifiable behavior
- Optical transparency
- Biological tools

Objectives

- Understand modulation of fundamental components of motion in variable temperature environment
- Decouple causes of behavioral changes

Hypothesis

- Drosophila will exhibit quantifiably different locomotion when experiencing different temperature stimuli
- Modulation of locomotion should depend on a (possibly linear) combination of physical changes and sensory inputs

Method

- Control temperature stimulus with one of the below metal platforms
- Allow larvae to freely navigate platforms and record trajectories
- Segment trajectories into components using computer vision and extract metrics using MATLAB

Setup

- Camera above gel in blackout box
- 3 different temperature controlling metal platforms
- Red light used for illumination
- 15 minute experiments of 20 larvae

Results

Temperature Insensitive Mutants

- Faster with increasing temperature and older age
- Speed independent of temperature sensing
- Turn rate mostly independent of temperature sensing
- Feedback input ties together speed and turn rate

Conclusion

- Incorporate moat design into all platforms
- Use spatially invariant experiments for function modeling
- Use temporally invariant experiments to analyze $\frac{dT}{dt}$
- Use different temperature insensitive mutants

Future Work

- Develops methodology for decoupling previously unseparated factors that cause behavioral changes
- Can potentially be scaled up to more complex organisms
- Method by which more can be learned about brain function

Significance & Application

- Develops methodology for decoupling previously unseparated factors that cause behavioral changes
- Can potentially be scaled up to more complex organisms
- Method by which more can be learned about brain function

Modulation of the Navigational Strategy of Drosophila in Controlled Temperature Environments

Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein