Publication Date



Open access

Embargo Period


Degree Type


Degree Name

Doctor of Philosophy (PHD)


Applied Marine Physics (Marine)

Date of Defense


First Committee Member

Harry DeFerrari

Second Committee Member

Arthur Mariano

Third Committee Member

Kevin Smith

Fourth Committee Member

Jorge Willemsen


In an ideal shallow water propagation channel the sound field is accurately described by normal modes and the mode structure is predictable with clean separated modes. However the real ocean environment is rarely ideal, and variations in bottom bathymetry and water column sound speed are usually present. Random fluctuations of the sound speed in time, space, and/or the boundaries can distort modes such that phase coherence is reduced and under some conditions completely lost. The basic research community seeks to understand the effects of internal waves on temporal coherence. Here the study method of choice is to use fixed system experiments that observe both oceanographic and acoustical fluctuations. On the other hand applied Naval research is focused on using mobile platforms to instantaneously measure spatial coherence shipboard, and they have little to no interest in measuring long term coherence. Here we seek to present a unified theory using normal modes. Both spatial and temporal coherence as well as the effects of source motion and Doppler will be addressed. Mode structure can be randomized in two ways: sound speed fluctuations and boundary variations. The research proposed here will emphasize spatial variations of the bottom bathymetry and how they affect mode arrivals. A parabolic equation model is used to predict mode shapes in a range dependent environment and random variations in bottom boundaries will be introduced and distortion in the mode arrival structure will be observed. The mode arrival structures will then be used to estimate temporal and spatial coherence of the mode arrivals and the predictions will be compared to the data from three different shallow water experiments.


Acoustics; Coherence; Ocean; Bathymetry