Publication Date



Open access

Degree Type


Degree Name

Doctor of Philosophy (PHD)


Marine and Atmospheric Chemistry (Marine)

Date of Defense


First Committee Member

Joseph M. Prospero

Second Committee Member

Dennis Hansell

Third Committee Member

Frank Millero

Fourth Committee Member

William Landing


The atmospheric transport of various substances from the continents to the oceans plays an important role in biogeochemical processes. Trace metals, iron in particular is of great interest as its availability regulates the growth of phytoplankton over large areas of the ocean. This dissertation focuses on examining and characterizing the factors that affect the solubility of trace metals in Miami and Barbados aerosols and precipitation, in particular species that could play a role in surface seawater biogeochemistry (Fe and trace metals such as Al, V, Cr, Mn, Cu, Co, Ni, Zn, As, Tl, Ba, Cd, Pb, Th, Ti, Zr, and REE's). To enable this study existing methods of colorimetric spectroscopic and inductively coupled plasma mass spectrometry analysis were improved and modified. This dissertation examines several issues related to source inputs: 1.) Are single spot sources within the North African dust source distinguishable after long transport by their bulk metal composition and thus important in the characteristics of individual mineral dust samples? 2.) What is the temporal variability and controlling factors in trace metal solubility in trade wind aerosols collected over Barbados? 3.) Which factors control the observed trend of speciation and increasing iron solubility in decreasing aerosol loading? Additionally a kinetic model of species specific iron (II) to iron(III) oxidation kinetics in NaCl Brines was conducted at nano-molar levels. This study greatly expands the ability to predict rates of iron oxidation at concentrations closer to those observed in natural systems.


Precipitation; Barbados; Atmospheric Deposition; Aerosols; Trace Metals; Iron