Publication Date



Open access

Degree Type


Degree Name

Doctor of Philosophy (PHD)


Marine Geology and Geophysics (Marine)

Date of Defense


First Committee Member

Gregor P. Eberli

Second Committee Member

Christopher G. A. Harrison

Third Committee Member

Timothy H. Dixon

Fourth Committee Member

Volker C. Vahrenkamp


Sequence stratigraphy relates changes in vertical and lateral facies distribution to relative changes in sea level. These relative changes in carbonates effect early diagenesis, types of pores, cementation and dissolution patterns. As a result, in carbonates, relative changes in sea level significantly impact the lithology, porosity, diagenesis, bed and bounding surfaces which are all factors that control fracture patterns. This study explores these relationships by integrating stratigraphy with fracture analysis and petrophysical properties. A special focus is given to the relationship between mechanical boundaries and sequence stratigraphic boundaries in three different settings: 1) Mississippian strata in Sheep Mountain Anticline, Wyoming, 2) Mississippian limestones in St. Louis, Missouri, and 3) Pennsylvanian limestones intermixed with clastics in the Paradox Basin, Utah. The analysis of these sections demonstrate that a fracture hierarchy exists in relation to the sequence stratigraphic hierarchy. The majority of fractures (80%) terminate at genetic unit boundaries or the internal flooding surface that separates the transgressive from regressive hemicycle. Fractures (20%) that do not terminate at genetic unit boundaries or their internal flooding surface terminate at lower order sequence stratigraphic boundaries or their internal flooding surfaces. Secondly, the fracture spacing relates well to bed thickness in mechanical units no greater than 0.5m in thickness but with increasing bed thickness a scatter from the linear trend is observed. In the Paradox Basin the influence of strain on fracture density is illustrated by two sections measured in different strain regimes. The folded strata at Raplee Anticline has higher fracture densities than the flat-lying beds at the Honaker Trail. Cemented low porosity rocks in the Paradox Basin do not show a correlation between fracture pattern and porosity. However velocity and rock stiffness moduli's display a slight correlation to fracture spacing. Furthermore, bed thickness is found to be only one factor in determining fracture density but with increasing strain, internal bedforms and rock petrophysical heterogeneities influence fracture density patterns. This study illustrates how integrating sedimentologic and sequence stratigraphic interpretations with data on structural kinematics can lead to refined predictive understanding of fracture attributes.


Sequence Stratigraphy; Mechanical Startigraphy; Fractures; Genetic Units