Publication Date




Embargo Period


Degree Type


Degree Name

Doctor of Philosophy (PHD)


Neuroscience (Medicine)

Date of Defense


First Committee Member

Eva Widerström-Noga

Second Committee Member

Phillip McCabe

Third Committee Member

Kristopher Arheart

Fourth Committee Member

Helen Bramlett

Fifth Committee Member

Jacqueline Sagen


Neuropathic pain (NP) after spinal cord injury (SCI) can significantly and negatively affect a person’s quality of life and is often refractory to currently available treatments. In order to advance the field and find effective therapeutic avenues; signs, symptoms, and biomarkers in humans should be identified and related to specific pain-generating mechanisms. The present work utilizes quantitative sensory testing (QST) and magnetic resonance spectroscopy (MRS) to evaluate the relationship between the functional integrity of the dorsal column-medial lemniscus pathway (DCML), the spinothalamic tract (STT), and metabolic markers of neuronal loss and glial activation in the thalamus of persons with/without NP after SCI. This work was based on the hypothesis that the presence/severity of NP after SCI is dependent both on function of ascending somatosensory pathways and changes in neuronal and glial markers in the thalamus. The results indicate that NP is associated with a decreased afferent DCML input to the thalamus resulting in a loss of inhibitory neurons and that residual function from STT afferents may contribute to thalamic glial activation and NP. Based on this work, in combination with previous studies in animals and humans, it can be proposed that NP after SCI partly results from the combination of residual STT function and loss of neuronal inhibition leading to neuronal hyperexcitability in the spinal cord and the thalamus. Thus, the presence of NP in chronic SCI is dependent on several underlying mechanisms which may be measured in human subjects with methods such as QST and MRS. Clinical implications and recommendations for further research are enclosed.


neuropathic pain; spinal cord injury; quantitative sensory testing