Publication Date



Open access

Degree Type


Degree Name

Master of Science (MS)


Electrical and Computer Engineering (Engineering)

Date of Defense


First Committee Member

Dr. Kamal Premaratne - Committee Chair

Second Committee Member

Dr. Miroslav Kubat - Committee Member

Third Committee Member

Dr. Dushyantha T. Jayaweera - Committee Member


WICKRAMARATHNE, T. L. (M.S., Electrical and Computer Engineering) A Belief Theoretic Approach for Automated Collaborative Filtering (May 2008) Abstract of a thesis at the University of Miami. Thesis supervised by Professor Kamal Premaratne. No. of pages in text. (84) Automated Collaborative Filtering (ACF) is one of the most successful strategies available for recommender systems. Application of ACF in more sensitive and critical applications however has been hampered by the absence of better mechanisms to accommodate imperfections (ambiguities and uncertainties in ratings, missing ratings, etc.) that are inherent in user preference ratings and propagate such imperfections throughout the decision making process. Thus one is compelled to make various "assumptions" regarding the user preferences giving rise to predictions that lack sufficient integrity. With its Dempster-Shafer belief theoretic basis, CoFiDS, the automated Collaborative Filtering algorithm proposed in this thesis, can (a) represent a wide variety of data imperfections; (b) propagate the partial knowledge that such data imperfections generate throughout the decision-making process; and (c) conveniently incorporate contextual information from multiple sources. The "soft" predictions that CoFiDS generates provide substantial exibility to the domain expert. Depending on the associated DS theoretic belief-plausibility measures, the domain expert can either render a "hard" decision or narrow down the possible set of predictions to as smaller set as necessary. With its capability to accommodate data imperfections, CoFiDS widens the applicability of ACF, from the more popular domains, such as movie and book recommendations, to more sensitive and critical problem domains, such as medical expert support systems, homeland security and surveillance, etc. We use a benchmark movie dataset and a synthetic dataset to validate CoFiDS and compare it to several existing ACF systems.


Dempster Shafer Theory; Uncertainty Modeling; Knowledge Discovery From Partial Data