Publication Date



Open access

Embargo Period


Degree Type


Degree Name

Master of Science (MS)


Applied Marine Physics (Marine)

Date of Defense


First Committee Member

Maria J. Olascoaga

Second Committee Member

Michael G. Brown

Third Committee Member

Helena Solo-Gabriele

Fourth Committee Member

Adrianus Reniers


In order to understand water quality in the coastal ocean and its effects on human health, the necessity arises to locate the sources of contaminants and track their transport throughout the ocean. Dynamical systems methods are applied to the study of transport of enterococci as an indicator of microbial concentration in the vicinity of Hobie Beach, an urban, subtropical beach in Miami, FL that is used for recreation and bathing on a daily basis. Previous studies on water quality have shown that Hobie Beach has high microbial levels despite having no known point source. To investigate the cause of these high microbial levels, a combination of measured surface drifter trajectories and numerically simulated flows in the vicinity of Hobie Beach is used. The numerically simulated flows are used to identify Lagrangian Coherent Structures (LCSs), which provide a template for transport in the study area. Surface drifter trajectories are shown to be consistent with the simulated flows and the LCS structure. LCSs are then used to explain the persistent water contamination and unusually high concentrations of microbes in the water off of this beach as compared with its neighboring beaches. From the drifter simulations, as well as field experiments, one can see that passive tracers are trapped in the area along the coastline by LCS. The Lagrangian circulation of Hobie Beach, influenced primarily by tide and land geometry causes a high retention rate of water near the shore, and can be used to explain the elevated levels of enterococci in the water.


Lagrangian coherent structures; finite time Lyapunov exponents; drifters; fluid flow