Off-campus University of Miami users: To download campus access theses, please use the following link to log into our proxy server with your University of Miami CaneID and Password.

Non-University of Miami users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Effects of Body Mass Index and Walking Speed in Gait Biomechanics of Young Adult Males

Sonila Cami, University of Miami


Gait biomechanics of forty male subjects was evaluated at normal and fast walking speeds. The forty subjects composed four groups based on their body mass index, with ten subjects in each of the groups: underweight, normal weight, overweight and obese. To our knowledge this is the first comprehensive 3-dimensional kinetic and kinematic gait analysis of all four groups based on body mass index. The obese subjects walked with significantly slower gait speed by taking shorter steps and strides, while having significantly higher step widths and longer gait cycle times than the other subjects. The obese subjects spent significantly less time in single support and more time in double support than their non-obese counterparts. These adjustments in temporal characteristics for the obese participants may be as a result of the gait compensation for the additional body weight in order to give them the most efficient, stable and balanced walking ability. Body mass index affected significantly the forces and moments at the ankle, knee and hip in the medial-lateral plane while speed effects were more prominent in the sagittal and transverse planes. These results suggest that an increase in the body weight would affect the gait stability while increasing the speed will affect the gait progression. Contrary to most researchers beliefs that an increase of the body weight would increase the forces and moments of the knee in all three planes, this study was able to prove that the actual forces and moments in the medial-lateral plane for the knee joint decrease while the ones in the sagittal plane increase. On the other hand, the hip joint in the medial-lateral plane displays the highest forces and moment for the obese subjects. These results are indicative of a gait compensation related to increasing body weight in the medial-lateral compartment of the lower extremity joints. Recommendations for further studies and follow up experiments are enclosed.